Menu Close

advnced-calculus-prove-0-sin-tan-x-x-dx-pi-2-1-1-e-prove-that-0-1-e-x-2-x-2-dx-pi-




Question Number 133490 by mnjuly1970 last updated on 22/Feb/21
                .... advnced  calculus....      prove: 𝛗=∫_0 ^( ∞) ((sin(tan(x)))/x)dx=(π/2)(1−(1/e))   prove that: 𝚽=∫_0 ^( ∞) ((1−e^(−x^2 ) )/x^2 )dx=(√π)
.advncedcalculus.prove:ϕ=0sin(tan(x))xdx=π2(11e)provethat:Φ=01ex2x2dx=π
Answered by Dwaipayan Shikari last updated on 22/Feb/21
I(α)=∫_0 ^∞ ((e^(−αx^2 ) −e^(−βx^2 ) )/x^2 )dx  I′(α)=−∫_0 ^∞ e^(−αx^2 ) dx=−(√(π/(4α))) ⇒I(α)=−(√(πα)) +C  I(β)=−(√(πβ))+C=0⇒C=(√(πβ))  I(α)=(√π) ((√β)−(√α))  α=0  β=1  I(0)=∫_0 ^∞ ((1−e^(−x^2 ) )/x^2 )dx=(√π)
I(α)=0eαx2eβx2x2dxI(α)=0eαx2dx=π4αI(α)=πα+CI(β)=πβ+C=0C=πβI(α)=π(βα)α=0β=1I(0)=01ex2x2dx=π
Commented by mnjuly1970 last updated on 22/Feb/21
grateful..mr payan  very  nice..
grateful..mrpayanverynice..
Answered by mathmax by abdo last updated on 22/Feb/21
Φ=∫_0 ^∞   ((1−e^(−x^2 ) )/x^2 )dx let f(a) =∫_0 ^∞  ((1−e^(−ax^2 ) )/x^2 )  with a>0   f^′ (a)=∫_0 ^∞  e^(−ax^2 ) dx =∫_0 ^∞  e^(−((√a)x)^2 ) dx =_((√a)x=y)  ∫_0 ^∞  e^(−y^2 ) (dy/( (√a)))  =(1/( (√a)))∫_0 ^∞  e^(−y^2 ) dy =(1/( (√a)))((√π)/2) ⇒f(a) =k+(√(πa))  lim_(a→o) f(a)=0 ⇒f(a)=(√(πa)) and Φ=f(1)=(√π)
Φ=01ex2x2dxletf(a)=01eax2x2witha>0f(a)=0eax2dx=0e(ax)2dx=ax=y0ey2dya=1a0ey2dy=1aπ2f(a)=k+πalimaof(a)=0f(a)=πaandΦ=f(1)=π

Leave a Reply

Your email address will not be published. Required fields are marked *