Menu Close

All-the-terms-of-the-arithmetic-progession-u-1-u-2-u-3-u-n-are-positive-use-induction-to-prove-that-for-n-2-1-u-1-u-2-1-u-2-u-3-1-u-3-u-4-1-u-n-1-u-n-




Question Number 7743 by Tawakalitu. last updated on 13/Sep/16
All the terms of the arithmetic progession   u_1 , u_2 , u_3 , ... u_n   are positive . use induction to  prove that for n ≥ 2  (1/(u_1 u_2 )) + (1/(u_2 u_3 )) + (1/(u_3 u_4 )) + ... (1/(u_(n − 1) u_n ))  =  ((n − 1)/(u_1 u_n ))
Allthetermsofthearithmeticprogessionu1,u2,u3,unarepositive.useinductiontoprovethatforn21u1u2+1u2u3+1u3u4+1un1un=n1u1un
Answered by Yozzia last updated on 13/Sep/16
Let P(n) denote the statement, ∀n∈N,n≥2,  (1/(u_1 u_2 ))+(1/(u_2 u_3 ))+(1/(u_3 u_4 ))+...+(1/(u_(n−1) u_n ))=((n−1)/(u_1 u_n ))  for u_1 ,u_2 ,...,u_n  being an A.P with all terms positive.  For n=2, P(2) says (1/(u_1 u_2 ))=((2−1)/(u_1 u_2 ))=(1/(u_1 u_2 ))  which is true.  Assume P(n) is true for some n=k,i.e  Σ_(i=1) ^(k−1) (1/(u_i u_(i+1) ))=((k−1)/(u_1 u_k )).  Σ_(i=1) ^(k−1) (1/(u_i u_(i+1) ))+(1/(u_k u_(k+1) ))=((k−1)/(u_1 u_k ))+(1/(u_k u_(k+1) ))  Σ_(i=1) ^k (1/(u_i u_(i+1) ))=(1/u_k )(((k−1)/u_1 )+(1/u_(k+1) ))  Σ_(i=1) ^k (1/(u_i u_(i+1) ))=(1/u_k )((((k−1)u_(k+1) +u_1 )/(u_1 u_(k+1) )))  For the A.P, u_t =u_1 +(t−1)d for t∈N, d=common difference.  ∴ u_(k+1) =u_1 +kd  Σ_(i=1) ^k (1/(u_i u_(i+1) ))=(1/u_k )((((k−1)(u_1 +kd)+u_1 )/(u_1 u_(k+1) )))  Σ_(i=1) ^k (1/(u_i u_(i+1) ))=(1/u_k )(((k(u_1 +kd)−u_1 −kd+u_1 )/(u_1 u_(k+1) )))  Σ_(i=1) ^k (1/(u_i u_(i+1) ))=(1/u_k )(((k(u_1 +kd−d))/(u_1 u_(k+1) )))=(1/u_k )×((k(u_1 +(k−1)d))/(u_1 u_(k+1) ))  Σ_(i=1) ^k (1/(u_i u_(i+1) ))=(1/u_k )×((ku_k )/(u_1 u_(k+1) ))=(k/(u_1 u_(k+1) )) which is P(k+1)  Therefore, if P(k) is true, then P(k+1) is true.  Since P(2) is true then, by P.M.I,   P(n) is true ∀n∈N,n≥2.
LetP(n)denotethestatement,nN,n2,1u1u2+1u2u3+1u3u4++1un1un=n1u1unforu1,u2,,unbeinganA.Pwithalltermspositive.Forn=2,P(2)says1u1u2=21u1u2=1u1u2whichistrue.AssumeP(n)istrueforsomen=k,i.ek1i=11uiui+1=k1u1uk.k1i=11uiui+1+1ukuk+1=k1u1uk+1ukuk+1ki=11uiui+1=1uk(k1u1+1uk+1)ki=11uiui+1=1uk((k1)uk+1+u1u1uk+1)FortheA.P,ut=u1+(t1)dfortN,d=commondifference.uk+1=u1+kdki=11uiui+1=1uk((k1)(u1+kd)+u1u1uk+1)ki=11uiui+1=1uk(k(u1+kd)u1kd+u1u1uk+1)ki=11uiui+1=1uk(k(u1+kdd)u1uk+1)=1uk×k(u1+(k1)d)u1uk+1ki=11uiui+1=1uk×kuku1uk+1=ku1uk+1whichisP(k+1)Therefore,ifP(k)istrue,thenP(k+1)istrue.SinceP(2)istruethen,byP.M.I,P(n)istruenN,n2.
Commented by Tawakalitu. last updated on 13/Sep/16
Wow, Thank you so much.
Wow,Thankyousomuch.
Commented by Tawakalitu. last updated on 13/Sep/16
I  really appreciate
Ireallyappreciate

Leave a Reply

Your email address will not be published. Required fields are marked *