All-the-terms-of-the-arithmetic-progession-u-1-u-2-u-3-u-n-are-positive-use-induction-to-prove-that-for-n-2-1-u-1-u-2-1-u-2-u-3-1-u-3-u-4-1-u-n-1-u-n- Tinku Tara June 3, 2023 Arithmetic 0 Comments FacebookTweetPin Question Number 7743 by Tawakalitu. last updated on 13/Sep/16 Allthetermsofthearithmeticprogessionu1,u2,u3,…unarepositive.useinductiontoprovethatforn⩾21u1u2+1u2u3+1u3u4+…1un−1un=n−1u1un Answered by Yozzia last updated on 13/Sep/16 LetP(n)denotethestatement,∀n∈N,n⩾2,1u1u2+1u2u3+1u3u4+…+1un−1un=n−1u1unforu1,u2,…,unbeinganA.Pwithalltermspositive.Forn=2,P(2)says1u1u2=2−1u1u2=1u1u2whichistrue.AssumeP(n)istrueforsomen=k,i.e∑k−1i=11uiui+1=k−1u1uk.∑k−1i=11uiui+1+1ukuk+1=k−1u1uk+1ukuk+1∑ki=11uiui+1=1uk(k−1u1+1uk+1)∑ki=11uiui+1=1uk((k−1)uk+1+u1u1uk+1)FortheA.P,ut=u1+(t−1)dfort∈N,d=commondifference.∴uk+1=u1+kd∑ki=11uiui+1=1uk((k−1)(u1+kd)+u1u1uk+1)∑ki=11uiui+1=1uk(k(u1+kd)−u1−kd+u1u1uk+1)∑ki=11uiui+1=1uk(k(u1+kd−d)u1uk+1)=1uk×k(u1+(k−1)d)u1uk+1∑ki=11uiui+1=1uk×kuku1uk+1=ku1uk+1whichisP(k+1)Therefore,ifP(k)istrue,thenP(k+1)istrue.SinceP(2)istruethen,byP.M.I,P(n)istrue∀n∈N,n⩾2. Commented by Tawakalitu. last updated on 13/Sep/16 Wow,Thankyousomuch. Commented by Tawakalitu. last updated on 13/Sep/16 Ireallyappreciate Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Ifz-1-z-2-be-complex-numbers-prove-that-tan-z-1-z-2-tanz-1-tanz-2-1-tanz-1-tanz-2-Next Next post: Question-138818 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.