Menu Close

An-8-8-checkerboard-is-to-be-coloured-with-6-colors-in-a-way-that-no-2-adjacent-cells-sharing-side-have-the-same-color-In-how-many-ways-can-it-be-done-




Question Number 877 by sagarwal last updated on 07/Apr/15
An 8×8 checkerboard is to be coloured  with 6 colors  in a way that no 2 adjacent  cells (sharing side) have the same color. In how  many ways can it be done.
An8×8checkerboardistobecolouredwith6colorsinawaythatno2adjacentcells(sharingside)havethesamecolor.Inhowmanywayscanitbedone.
Commented by 123456 last updated on 12/Apr/15
 [(6,5,5,5,5,5,5,5),(5,4,4,4,4,4,4,4),(5,4,4,4,4,4,4,4),(5,4,4,4,4,4,4,4),(5,4,4,4,4,4,4,4),(5,4,4,4,4,4,4,4),(5,4,4,4,4,4,4,4),(5,4,4,4,4,4,4,4) ]  k=6×5^(7+7) ×4^(7×7)   k=6×5^(14) ×4^(49)   k=(2×3)×5^(14) ×(2^2 )^(49)   k=2×3×5^(14) ×2^(2×49)   k=2×3×5^(14) ×2^(98)   k=2^(98+1) ×3×5^(14)   k=2^(99) ×3×5^(14)   log k=log (2^(99) ×3×5^(14) )  log k=99log 2+log 3+14log 5  log k=((99ln 2+ln 3+14ln 5)/(ln 10))  log k≈40,06  40⪅log k<41  10^(40) ⪅k<10^(41)
[6555555554444444544444445444444454444444544444445444444454444444]k=6×57+7×47×7k=6×514×449k=(2×3)×514×(22)49k=2×3×514×22×49k=2×3×514×298k=298+1×3×514k=299×3×514logk=log(299×3×514)logk=99log2+log3+14log5logk=99ln2+ln3+14ln5ln10logk40,0640logk<411040k<1041
Commented by prakash jain last updated on 13/Apr/15
If we have only 2 color the grid approach  fills with 0s. I think what is missing are  special cases when all adjacent cells are  filled with same color as in 2−color cases.
Ifwehaveonly2colorthegridapproachfillswith0s.Ithinkwhatismissingarespecialcaseswhenalladjacentcellsarefilledwithsamecolorasin2colorcases.

Leave a Reply

Your email address will not be published. Required fields are marked *