Menu Close

An-alternating-current-after-passing-through-rectifire-has-the-form-i-I-0-sinx-for-0-x-pi-0-for-pi-x-2pi-where-I-0-is-the-maximum-current-and-period-is-




Question Number 137316 by BHOOPENDRA last updated on 01/Apr/21
An alternating current after passing    through rectifire has the  form               i=I_0 sinx      for 0≤x≤π                  =0             for π≤x≤2π  where I_0  is the maximum current   and period is 2π.express i is a   fourire series and evaluate  (1/(1.3))+(1/(3.5))+(1/(5.7))+.........∞
$${An}\:{alternating}\:{current}\:{after}\:{passing}\: \\ $$$$\:{through}\:{rectifire}\:{has}\:{the} \\ $$$${form}\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:{i}={I}_{\mathrm{0}} {sinx}\:\:\:\:\:\:{for}\:\mathrm{0}\leqslant{x}\leqslant\pi \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\mathrm{0}\:\:\:\:\:\:\:\:\:\:\:\:\:{for}\:\pi\leqslant{x}\leqslant\mathrm{2}\pi \\ $$$${where}\:{I}_{\mathrm{0}} \:{is}\:{the}\:{maximum}\:{current}\: \\ $$$${and}\:{period}\:{is}\:\mathrm{2}\pi.{express}\:{i}\:{is}\:{a}\: \\ $$$${fourire}\:{series}\:{and}\:{evaluate} \\ $$$$\frac{\mathrm{1}}{\mathrm{1}.\mathrm{3}}+\frac{\mathrm{1}}{\mathrm{3}.\mathrm{5}}+\frac{\mathrm{1}}{\mathrm{5}.\mathrm{7}}+………\infty \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *