An-oil-can-is-to-be-made-in-form-of-a-right-circular-cylinder-that-be-inscribed-in-a-sphere-of-radius-R-obtain-the-maximum-volume-of-the-can- Tinku Tara June 3, 2023 Mensuration 0 Comments FacebookTweetPin Question Number 6430 by sanusihammed last updated on 27/Jun/16 AnoilcanistobemadeinformofarightcircularcylinderthatbeinscribedinasphereofradiusR.obtainthemaximumvolumeofthecan. Commented by sanusihammed last updated on 27/Jun/16 Thankssomuchsir. Commented by Yozzii last updated on 27/Jun/16 V=πr2h(V=volumeofcan)Letθ=anglesubtendedbetweenthehorizontalandalinejoiningonepointofcontact,betweenthecanandthesphere,andthecentreofthesphere.sinθ=h2R⇒h=2Rsinθ0<θ<90°cosθ=rR⇒r=Rcosθ.V=πR2cos2θ×2×RsinθV=πR3cosθsin2θV=πR32(sin3θ+sinθ)dVdθ=πR3(−sinθsin2θ+2cosθcos2θ)WhendVdθ=0⇒2cosθcos2θ=sinθsin2θtanθtan2θ=22tan2θ1−tan2θ=2tan2θ=1−tan2θ2tan2θ=1⇒tanθ=12⇒θ=tan−1120<θ<90°dVdθ=πR32(3cos3θ+cosθ)d2Vdθ2=−πR32(9sin3θ+sinθ)Substitutingθ=tan−12−0.5givesd2Vdθ2<0⇒max(V)occursatθ=tan−12−0.5.tanθ=12⇒cosθ=23=23&sinθ=13.∴max(V)=2πR3×23×13max(V)=4πR333=13Vsphere Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-71957Next Next post: advanced-calculus-prove-that-0-1-ln-x-ln-1-x-1-x-dx-13-8-3-pi-2-4-ln-2- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.