Menu Close

An-oil-can-is-to-be-made-in-form-of-a-right-circular-cylinder-that-be-inscribed-in-a-sphere-of-radius-R-obtain-the-maximum-volume-of-the-can-




Question Number 6430 by sanusihammed last updated on 27/Jun/16
An oil can is to be made in form of a right circular cylinder that be  inscribed in a sphere of radius R. obtain the maximum   volume of the can.
AnoilcanistobemadeinformofarightcircularcylinderthatbeinscribedinasphereofradiusR.obtainthemaximumvolumeofthecan.
Commented by sanusihammed last updated on 27/Jun/16
Thanks so much sir.
Thankssomuchsir.
Commented by Yozzii last updated on 27/Jun/16
V=πr^2 h (V=volume of can)  Let θ=angle subtended between the  horizontal and a line joining one point  of contact, between the can and the sphere,  and the centre of the sphere.  sinθ=(h/(2R))⇒h=2Rsinθ    0<θ<90°  cosθ=(r/R)⇒r=Rcosθ.  V=πR^2 cos^2 θ×2×Rsinθ  V=πR^3 cosθsin2θ  V=((πR^3 )/2)(sin3θ+sinθ)  (dV/dθ)=πR^3 (−sinθsin2θ+2cosθcos2θ)  When (dV/dθ)=0  ⇒2cosθcos2θ=sinθsin2θ  tanθtan2θ=2  ((2tan^2 θ)/(1−tan^2 θ))=2  tan^2 θ=1−tan^2 θ  2tan^2 θ=1⇒tanθ=(1/( (√2)))⇒θ=tan^(−1) (1/( (√2)))  0<θ<90°  (dV/dθ)=((πR^3 )/2)(3cos3θ+cosθ)  (d^2 V/dθ^2 )=−((πR^3 )/2)(9sin3θ+sinθ)  Substituting θ=tan^(−1) 2^(−0.5)  gives (d^2 V/dθ^2 )<0  ⇒max(V) occurs at θ=tan^(−1) 2^(−0.5) .  tanθ=(1/( (√2)))⇒cosθ=((√2)/( (√3)))=(√(2/3))  & sinθ=(1/( (√3))).  ∴max(V)=2πR^3 ×(2/3)×(1/( (√3)))  max(V)=((4πR^3 )/(3(√3)))=(1/( (√3)))V_(sphere)
V=πr2h(V=volumeofcan)Letθ=anglesubtendedbetweenthehorizontalandalinejoiningonepointofcontact,betweenthecanandthesphere,andthecentreofthesphere.sinθ=h2Rh=2Rsinθ0<θ<90°cosθ=rRr=Rcosθ.V=πR2cos2θ×2×RsinθV=πR3cosθsin2θV=πR32(sin3θ+sinθ)dVdθ=πR3(sinθsin2θ+2cosθcos2θ)WhendVdθ=02cosθcos2θ=sinθsin2θtanθtan2θ=22tan2θ1tan2θ=2tan2θ=1tan2θ2tan2θ=1tanθ=12θ=tan1120<θ<90°dVdθ=πR32(3cos3θ+cosθ)d2Vdθ2=πR32(9sin3θ+sinθ)Substitutingθ=tan120.5givesd2Vdθ2<0max(V)occursatθ=tan120.5.tanθ=12cosθ=23=23&sinθ=13.max(V)=2πR3×23×13max(V)=4πR333=13Vsphere

Leave a Reply

Your email address will not be published. Required fields are marked *