Menu Close

Analyze-for-integer-solution-a-b-c-are-fixed-positive-integers-ax-a-by-b-cz-c-




Question Number 4266 by Rasheed Soomro last updated on 06/Jan/16
Analyze for  integer solution :  a,b,c are fixed positive integers.  ax^a +by^b =cz^c
Analyzeforintegersolution:a,b,carefixedpositiveintegers.axa+byb=czc
Commented by Yozzii last updated on 06/Jan/16
If (x,y,z)=(n^(1/a) ,j^(1/b) ,k^(1/c) ), where  n,j and k are the a−th,b−th & c−th  powers of positive integers,respectively, then  the equation ax^a +by^b =cz^c  reduces to    an+bj=ck.  an+bj−ck=0   ⇒(a/c)n+(b/c)j=k
If(x,y,z)=(n1/a,j1/b,k1/c),wheren,jandkaretheath,bth&cthpowersofpositiveintegers,respectively,thentheequationaxa+byb=czcreducestoan+bj=ck.an+bjck=0acn+bcj=k
Commented by prakash jain last updated on 06/Jan/16
a=b=c=1  x+y=z  a=b=c=2  pythogorean triples  a=b=c≥3 no solution
a=b=c=1x+y=za=b=c=2pythogoreantriplesa=b=c3nosolution
Commented by Rasheed Soomro last updated on 13/Jan/16
ax^a +by^b =cz^c   For a=1,b=2 and c=3  x+2y^2 =3z^3   x=3z^3 −2y^2   Take values of y and z so that  3z^3 >2y^2   For example  x=6,y=3,z=2  (6+2(3)^2 =3(2)^3   6+18=24  24=24)  For a=2,b=3 and c=4  2x^2 +3y^3 =4z^4   2x^2 +3y^3   ∈ E ∧ 2x^2 ∈ E  ⇒3y^3  ∈ E ⇒y∈E  For y=0  2x^2 =4z^4   (x^2 /z^4 )=(4/2)=2  For y=0 no integer x,z  For y=2  2x^2 +24=4z^4   2z^4 −x^2 =12  The above equation is quadratic   in x^2  and it can be shown that  even x^2  is not integer.  We have narrowed search  to y to be even numbers.
axa+byb=czcFora=1,b=2andc=3x+2y2=3z3x=3z32y2Takevaluesofyandzsothat3z3>2y2Forexamplex=6,y=3,z=2(6+2(3)2=3(2)36+18=2424=24)Fora=2,b=3andc=42x2+3y3=4z42x2+3y3E2x2E3y3EyEFory=02x2=4z4x2z4=42=2Fory=0nointegerx,zFory=22x2+24=4z42z4x2=12Theaboveequationisquadraticinx2anditcanbeshownthatevenx2isnotinteger.Wehavenarrowedsearchtoytobeevennumbers.
Answered by Rasheed Soomro last updated on 11/Jan/16
ax^a +by^b =cz^c   Let a=4j^2  , b=4k^2  , c=4l^2   4j^2 x^(4j^2 ) +4k^2 y^(4k^2 ) =4l^2 z^(4l^2 )   j^2 x^(4j^2 ) +k^2 y^(4k^2 ) =l^2 z^(4l^2 )   (jx^(2j^2 ) )^2 +(ky^(2k^2 ) )^2 =(lz^(2l^2 ) )^2   (jx^(2j^2 ) ,ky^(2k^2 ) ,lz^(2l^2 ) ) is Pythagorean triple.  −−−−−−−−−−−  If (X,Y,Z) is Pythagorean triplet  such that j∣X ,k∣Y and l∣Z  ((1/j) X^( (1/(2j^2 )))  , (1/k)Y^( (1/(2k^2 )))  , (1/l)Z^( (1/(2l^2 )))  ) is triplet  satisfying  ax^a +by^b =cz^c  where  j=((√a)/2) ,k=((√b)/2) ,l=((√c)/2)  a,b,c perfect squares and even  −−−−−−−−OR−−−−−−−  If (X,Y,Z) is Pythagorean triplet  such that ((√a)/2) ∣ X ,((√b)/2) ∣ Y and ((√c)/2) ∣Z  Also  X^(1/a)  ,Y^(1/b) ,Z^(1/c)  are integers.   ((2/( (√a))) X^(2/a) , (2/( (√b))) Y^(2/b) ,(2/( (√c))) Z^(2/c) ) is a required triple .  a,b,c are perfect squares and even.  j=1,k=2,l=3  (x^2 )^2 +(2y^8 )^2 =(3z^(18) )^2   x^4 +4y^(16) =9z^(36)   −−−−−−  (m^2 −n^2 ,2mn,m^2 +n^2 ) is general  triple,suggested by Euclid  ∀ m,n∈N ∧ m>n  −−−−−−−−−−  For 2mn to be of bx^b  type  let m=(b/2)n^(b−1)   2mn=bn^b   m^2 +n^2 =(bn^b )^2 +n^2 =b^2 n^(2b) +n^2               =(b^2 n^(2b−2) +1)n^2 =cn^c                  (b^2 n^(2b−2) +1)=cn^(c−2)     Continue
axa+byb=czcLeta=4j2,b=4k2,c=4l24j2x4j2+4k2y4k2=4l2z4l2j2x4j2+k2y4k2=l2z4l2(jx2j2)2+(ky2k2)2=(lz2l2)2(jx2j2,ky2k2,lz2l2)isPythagoreantriple.If(X,Y,Z)isPythagoreantripletsuchthatjX,kYandlZ(1jX12j2,1kY12k2,1lZ12l2)istripletsatisfyingaxa+byb=czcwherej=a2,k=b2,l=c2a,b,cperfectsquaresandevenORIf(X,Y,Z)isPythagoreantripletsuchthata2X,b2Yandc2ZAlsoX1a,Y1b,Z1careintegers.(2aX2a,2bY2b,2cZ2c)isarequiredtriple.a,b,careperfectsquaresandeven.j=1,k=2,l=3(x2)2+(2y8)2=(3z18)2x4+4y16=9z36(m2n2,2mn,m2+n2)isgeneraltriple,suggestedbyEuclidm,nNm>nFor2mntobeofbxbtypeletm=b2nb12mn=bnbm2+n2=(bnb)2+n2=b2n2b+n2=(b2n2b2+1)n2=cnc(b2n2b2+1)=cnc2Continue

Leave a Reply

Your email address will not be published. Required fields are marked *