Menu Close

arcsin-ln-3-cot4-x-4-1-19-5-




Question Number 132107 by weltr last updated on 11/Feb/21
(arcsin∣ln^3 (cot4 − x)∣ + 4!)^(1/(19))  = 5
$$\left({arcsin}\mid\mathrm{ln}^{\mathrm{3}} \left({cot}\mathrm{4}\:−\:{x}\right)\mid\:+\:\mathrm{4}!\right)^{\frac{\mathrm{1}}{\mathrm{19}}} \:=\:\mathrm{5} \\ $$
Answered by Olaf last updated on 11/Feb/21
(arcsin∣ln^3 (cot4−x)∣+4!)^(1/(19))  = 5  arcsin∣ln^3 (cot4−x)∣ = 5^(19) −24 > (π/2)  S_R  = ∅
$$\left(\mathrm{arcsin}\mid\mathrm{ln}^{\mathrm{3}} \left(\mathrm{cot4}−{x}\right)\mid+\mathrm{4}!\right)^{\frac{\mathrm{1}}{\mathrm{19}}} \:=\:\mathrm{5} \\ $$$$\mathrm{arcsin}\mid\mathrm{ln}^{\mathrm{3}} \left(\mathrm{cot4}−{x}\right)\mid\:=\:\mathrm{5}^{\mathrm{19}} −\mathrm{24}\:>\:\frac{\pi}{\mathrm{2}} \\ $$$$\mathcal{S}_{\mathbb{R}} \:=\:\emptyset \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *