Menu Close

Are-A-B-A-B-and-A-B-completely-equivalent-Simplify-A-B-A-B-to-A-B-using-set-operations-and-their-properties-




Question Number 1698 by Rasheed Ahmad last updated on 01/Sep/15
•Are A∪B=A∩B  and  A=B   completely equivalent?  •Simplify A∪B=A∩B to A=B  using set operations and their  properties.
AreAB=ABandA=Bcompletelyequivalent?SimplifyAB=ABtoA=Busingsetoperationsandtheirproperties.
Answered by 123456 last updated on 01/Sep/15
if A∪B=A∩B them A=B  we have that A∪B=A∩B them ∀x,x∈A∪B,x∈A∩B  them supose that A≠B, without loss  of generality suppose tbat ∣A∣>∣B∣  x∈A,x∉B  x∈A∪B,x∉A∩B (contradition)  hence A=B  and if A=B, the  A∪B=A∪A=A  A∩B=A∩A=A  A∪B=A∩B  so  A∪B=A∩B⇔A=B
ifAB=ABthemA=BwehavethatAB=ABthemx,xAB,xABthemsuposethatAB,withoutlossofgeneralitysupposetbatA∣>∣BxA,xBxAB,xAB(contradition)henceA=BandifA=B,theAB=AA=AAB=AA=AAB=ABsoAB=ABA=B
Answered by 123456 last updated on 01/Sep/15
A∪B=A∩B  (A∪B)∪A=(A∩B)∪A  A∪B=A  (A∪B)∪B=(A∩B)∪B  A∪B=B  A=B
AB=AB(AB)A=(AB)AAB=A(AB)B=(AB)BAB=BA=B
Commented by 123456 last updated on 01/Sep/15
(A∪B)∩A=(A∩B)∩A  A=A∩B  (A∪B)∩B=(A∩B)∩B  B=A∩B
(AB)A=(AB)AA=AB(AB)B=(AB)BB=AB
Commented by Rasheed Ahmad last updated on 01/Sep/15
G^(oo) DD_(eductio) N _!^!
GooDDeductioN!!
Commented by 123456 last updated on 02/Sep/15
also we can extend it to  ∪_(i=1) ^n A_i =∩_(i=1) ^n A_i ⇔A_i =A_j ,i∈{1,...,n},j∈{1,...,n}  n∈N^∗
alsowecanextendittoni=1Ai=ni=1AiAi=Aj,i{1,,n},j{1,,n}nN
Commented by Rasheed Soomro last updated on 03/Sep/15
Generalization! V. Good!
Generalization!V.Good!

Leave a Reply

Your email address will not be published. Required fields are marked *