Menu Close

Are-there-two-complex-numbers-which-are-cube-of-one-another-If-yes-what-are-they-




Question Number 1439 by Rasheed Ahmad last updated on 04/Aug/15
Are there two complex numbers  which are cube of one another?  If yes what are they?
Aretheretwocomplexnumberswhicharecubeofoneanother?Ifyeswhatarethey?
Answered by 123456 last updated on 04/Aug/15
 { ((x=y^3 )),((y=x^3 )) :}  x=y^3 =(x^3 )^3 =x^9   x^9 −x=0  x(x^8 −1)=0  x=0∨x=(1)^(1/8)   S={(x,y)∈C^2 ,k∈{0,1,2,3,4,5,6,7};(x,y)=(0,0)∨(x,y)=(e^(ιπk/4) ,e^(3ıπk/4) )}
{x=y3y=x3x=y3=(x3)3=x9x9x=0x(x81)=0x=0x=18S={(x,y)C2,k{0,1,2,3,4,5,6,7};(x,y)=(0,0)(x,y)=(eιπk/4,e3ıπk/4)}
Commented by 123456 last updated on 04/Aug/15
(0,0)≡(0,0)  (1,1)≡(1,1)                             (e^(ıπ/4) ,e^(3ıπ/4) )≡(((√2)/2)+ı((√2)/2),−((√2)/2)+ı((√2)/2))  (e^(ıπ/2) ,e^(3ıπ/2) )≡(ı,−ı)  (e^(3ıπ/4) ,e^(9ıπ/4) )≡(−((√2)/2)+ı((√2)/2),((√2)/2)+ı((√2)/2))  (e^(ıπ) ,e^(3ıπ) )≡(−1,−1)  (e^(5ıπ/4) ,e^(15ıπ/4) )≡(−((√2)/2)−ı((√2)/2),((√2)/2)−ı((√2)/2))  (e^(3ıπ/2) ,e^(9ıπ/2) )≡(−ı,ı)  (e^(7ıπ/4) ,e^(21ıπ/4) )≡(((√2)/2)−ı((√2)/2),−((√2)/2)−ı((√2)/2))
(0,0)(0,0)(1,1)(1,1)(eıπ/4,e3ıπ/4)(22+ı22,22+ı22)(eıπ/2,e3ıπ/2)(ı,ı)(e3ıπ/4,e9ıπ/4)(22+ı22,22+ı22)(eıπ,e3ıπ)(1,1)(e5ıπ/4,e15ıπ/4)(22ı22,22ı22)(e3ıπ/2,e9ıπ/2)(ı,ı)(e7ıπ/4,e21ıπ/4)(22ı22,22ı22)
Commented by 123456 last updated on 15/Aug/15
n∈N^∗    { ((x^n =y^(3n) )),((y^(3n) =x^(9n) )) :}  x^n =x^(9n) ⇔x^n (x^(8n) −1)=0   { ((x^(3n) =y^(9n) )),((y^n =x^(3n) )) :}  y^n =y^(9n) ⇔y^n (y^(8n) −1)=0
nN{xn=y3ny3n=x9nxn=x9nxn(x8n1)=0{x3n=y9nyn=x3nyn=y9nyn(y8n1)=0

Leave a Reply

Your email address will not be published. Required fields are marked *