Menu Close

ax-b-cx-d-2-dx-




Question Number 5032 by gourav~ last updated on 04/Apr/16
∫((ax+b)/((cx+d)^2 ))dx =?
ax+b(cx+d)2dx=?
Answered by Yozzii last updated on 04/Apr/16
Let u=cx+d⇒du=cdx⇒c^(−1) du=dx.  x=((u−d)/c)⇒ax+b=((a(u−d))/c)+b  ax+b=ac^(−1) u−adc^(−1) +b  ∫((ax+b)/((cx+d)^2 ))dx=∫(((ac^(−1) u−adc^(−1) +b)c^(−1) du)/u^2 )  =c^(−1) ∫(ac^(−1) u^(−1) +(b−adc^(−1) )u^(−2) )du  =c^(−1) (ac^(−1) ln∣u∣+(adc^(−1) −b)u^(−1) )+K  ∫((ax+b)/((cx+d)^2 ))dx=((aln∣cx+d∣)/c^2 )+((ad−bc)/(c^2 (cx+d)))+K     (c≠0)  K=constant of integration
Letu=cx+ddu=cdxc1du=dx.x=udcax+b=a(ud)c+bax+b=ac1uadc1+bax+b(cx+d)2dx=(ac1uadc1+b)c1duu2=c1(ac1u1+(badc1)u2)du=c1(ac1lnu+(adc1b)u1)+Kax+b(cx+d)2dx=alncx+dc2+adbcc2(cx+d)+K(c0)K=constantofintegration

Leave a Reply

Your email address will not be published. Required fields are marked *