Menu Close

by-use-Gamma-function-prove-1-0-pi-8-cos-3-4xdx-1-6-2-0-pi-sin-6-x-2-cos-8-x-2-dx-5pi-2-11-




Question Number 139371 by mohammad17 last updated on 26/Apr/21
by use Gamma function prove     (1) ∫_0 ^( (π/8)) cos^3 4xdx=(1/6)    (2) ∫_0 ^( π) sin^6 ((x/2))cos^8 ((x/2))dx=((5π)/2^(11) )
byuseGammafunctionprove(1)0π8cos34xdx=16(2)0πsin6(x2)cos8(x2)dx=5π211
Answered by Dwaipayan Shikari last updated on 26/Apr/21
(x/2)=u  ⇒2∫_0 ^(π/2) sin^6 (u)cos^8 (u)du=((Γ((7/2))Γ((9/2)))/(Γ(8)))=(((5/2).(3/2).(3/2).(5/2).(7/2).(1/2).(1/2)π)/(7!))  =(π/2^7 ).((5.5.3.3)/(6!))=(π/2^8 ).((3.5)/(4!))=((5π)/2^(11) )
x2=u20π2sin6(u)cos8(u)du=Γ(72)Γ(92)Γ(8)=52.32.32.52.72.12.12π7!=π27.5.5.3.36!=π28.3.54!=5π211
Commented by mohammad17 last updated on 26/Apr/21
thank you sir and number (1) can you solve
thankyousirandnumber(1)canyousolve
Answered by Dwaipayan Shikari last updated on 26/Apr/21
4x=u  ⇒(1/4)∫_0 ^(π/2) cos^3 (u)du=(1/4).((Γ(2)Γ((1/2)))/(2Γ((5/2))))=(1/4).((√π)/((3(√π))/4)).(1/2)=(1/6)
4x=u140π2cos3(u)du=14.Γ(2)Γ(12)2Γ(52)=14.π3π4.12=16
Commented by mohammad17 last updated on 26/Apr/21
sir can you clear this steb how get    Γ(2) and Γ((1/2)) from cos^3 (u)
sircanyouclearthisstebhowgetΓ(2)andΓ(12)fromcos3(u)
Commented by mohammad17 last updated on 26/Apr/21
thank you sir
thankyousir
Commented by Dwaipayan Shikari last updated on 26/Apr/21
∫_0 ^(π/2) cos^(2n−1) x sin^(2α−1) x dx=((Γ(n)Γ(α))/(2Γ(n+α)))  ∫_0 ^(π/2) cos^3 x dx=∫_0 ^(π/2) cos^(2.2−1) x sin^(2((1/2))−1) xdx=((Γ(2)Γ((1/2)))/(2Γ(2+(1/2))))
0π2cos2n1xsin2α1xdx=Γ(n)Γ(α)2Γ(n+α)0π2cos3xdx=0π2cos2.21xsin2(12)1xdx=Γ(2)Γ(12)2Γ(2+12)
Answered by Ar Brandon last updated on 26/Apr/21
I=∫_0 ^(π/8) cos^3 4xdx , u=4x     =(1/4)∫_0 ^(π/2) cos^3 udu=(1/8)β(2,(1/2))     =(1/8)∙((Γ(2)Γ((1/2)))/(Γ((5/2))))=(1/8)∙((√π)/((3/2)∙(1/2)∙(√π)))=(1/6)    J=∫_0 ^π sin^6 ((x/2))cos^8 ((x/2))dx , x=2v      =2∫_0 ^(π/2) sin^6 vcos^8 vdv=β((7/2),(9/2))      =((Γ((7/2))Γ((9/2)))/(Γ(8)))=(1/(7!))∙((5/2)∙(3/2)∙((√π)/2))^2 ∙(7/2)      =((225π)/(720×2^7 ))=((5π)/(2048))=((5π)/2^(11) )
I=0π8cos34xdx,u=4x=140π2cos3udu=18β(2,12)=18Γ(2)Γ(12)Γ(52)=18π3212π=16J=0πsin6(x2)cos8(x2)dx,x=2v=20π2sin6vcos8vdv=β(72,92)=Γ(72)Γ(92)Γ(8)=17!(5232π2)272=225π720×27=5π2048=5π211

Leave a Reply

Your email address will not be published. Required fields are marked *