Menu Close

calculae-A-n-0-dx-x-2-1-n-with-n-integr-natural-and-n-gt-0-




Question Number 67006 by mathmax by abdo last updated on 21/Aug/19
calculae A_n =∫_0 ^∞     (dx/((x^2 +1)^n ))   with n integr natural and n>0
calculaeAn=0dx(x2+1)nwithnintegrnaturalandn>0
Commented by mathmax by abdo last updated on 22/Aug/19
A_n =∫_0 ^∞   (dx/((x^2 +1)^n ))  changement x=tanθ give   A_n =∫_0 ^(π/2)     (((1+tan^2 θ))/((1+tan^2 θ)^n ))dθ =∫_0 ^(π/2)  (cos^2 θ)^(n−1) dθ =∫_0 ^(π/2)  cos^(2n−2) θ dθ  (its a wallis integral) we have A_(n+1) =∫_0 ^(π/2)  cos^(2n) θdθ  =∫_0 ^(π/2)  (1−sin^2 θ)cos^(2n−2) θ dθ = A_(n−1) −∫_0 ^(π/2)  sin^2 θ cos^(2n−2) θ dθ  by parts u=sinθ  and v^′  =sinθ cos^(2n−2) θ ⇒  ∫_0 ^(π/2) sin^2 θ cos^(2n−2) θ dθ =[−(1/(2n−1))sinθ cos^(2n−1) θ]_0 ^(π/2) +(1/(2n−1))∫_0 ^(π/2)  cosθ cos^(2n−1) θ dθ  =(1/(2n−1)) A_(n+1)  ⇒A_(n+1) =A_(n−1) −(1/(2n−1)) A_(n+1)  ⇒  (1+(1/(2n−1)))A_(n+1) =A_n  ⇒((2n)/(2n−1)) A_(n+1) =A_n  ⇒A_(n+1) =((2n−1)/(2n)) A_n   ⇒ Π_(k=1) ^(n−1)  A_(k+1) =Π_(k=1) ^(n−1)  ((2k−1)/(2k)) ×Π_(k=1) ^(n−1)  A_k  ⇒  A_2 .A_3 .....A_n =((Π_(k=1) ^(n−1) (2k−1))/(Π_(k=1) ^(n−1) (2k)))×A_1 .A_2 .....A_(n−1  ) ⇒  A_n =((1.3.5......(2n−3))/(2^(n−1) (n−1)!)) A_1  =((1.2.3.4.5....(2n−3)(2n−2))/(2^(n−1) (n−1)!2.4....2(n−1)))A_1   =(((2n−2)!)/((2^(n−1) )^2 ((n−1)!)^2 )) (π/2) =(((2n−2)!)/(2^(2n−1) {(n−1)!}^2 ))×π
An=0dx(x2+1)nchangementx=tanθgiveAn=0π2(1+tan2θ)(1+tan2θ)ndθ=0π2(cos2θ)n1dθ=0π2cos2n2θdθ(itsawallisintegral)wehaveAn+1=0π2cos2nθdθ=0π2(1sin2θ)cos2n2θdθ=An10π2sin2θcos2n2θdθbypartsu=sinθandv=sinθcos2n2θ0π2sin2θcos2n2θdθ=[12n1sinθcos2n1θ]0π2+12n10π2cosθcos2n1θdθ=12n1An+1An+1=An112n1An+1(1+12n1)An+1=An2n2n1An+1=AnAn+1=2n12nAnk=1n1Ak+1=k=1n12k12k×k=1n1AkA2.A3..An=k=1n1(2k1)k=1n1(2k)×A1.A2..An1An=1.3.5(2n3)2n1(n1)!A1=1.2.3.4.5.(2n3)(2n2)2n1(n1)!2.4.2(n1)A1=(2n2)!(2n1)2((n1)!)2π2=(2n2)!22n1{(n1)!}2×π

Leave a Reply

Your email address will not be published. Required fields are marked *