Menu Close

calculate-0-1-dt-1-t-2-3-




Question Number 66328 by mathmax by abdo last updated on 12/Aug/19
calculate ∫_0 ^1  (dt/((1+t^2 )^3 ))
calculate01dt(1+t2)3
Commented by mathmax by abdo last updated on 15/Aug/19
let I =∫_0 ^1  (dt/((1+t^2 )^3 )) changement t=tanθ give  I =∫_0 ^(π/4)    ((1+tan^2 θ)/((1+tan^2 θ)^3 ))dθ =∫_0 ^(π/4)  (dθ/((1+tan^2 θ)^2 )) =∫_0 ^(π/4)  cos^4 θdθ  =∫_0 ^(π/4) (((1+cos(2θ))/2))^2 dθ =(1/4)∫_0 ^(π/4) (1+2cos(2θ) +((1+cos(4θ))/2))dθ  =(1/8)∫_0 ^(π/4) {3 +4cos(2θ)+cos(4θ)}dθ  =(3/8)(π/4) +(1/2) ∫_0 ^(π/4)  cos(2θ)dθ +(1/8)∫_0 ^(π/4)  cos(4θ)dθ  =((3π)/(32)) +(1/4)[sin(2θ)]_0 ^(π/4)  +(1/(32))[sin(4θ)]_0 ^(π/4)   =((3π)/(32)) +(1/4) +0 ⇒ I =((3π)/(32)) +(1/4)
letI=01dt(1+t2)3changementt=tanθgiveI=0π41+tan2θ(1+tan2θ)3dθ=0π4dθ(1+tan2θ)2=0π4cos4θdθ=0π4(1+cos(2θ)2)2dθ=140π4(1+2cos(2θ)+1+cos(4θ)2)dθ=180π4{3+4cos(2θ)+cos(4θ)}dθ=38π4+120π4cos(2θ)dθ+180π4cos(4θ)dθ=3π32+14[sin(2θ)]0π4+132[sin(4θ)]0π4=3π32+14+0I=3π32+14

Leave a Reply

Your email address will not be published. Required fields are marked *