calculate-0-1-e-2t-ln-1-t-dt- Tinku Tara June 3, 2023 Integration FacebookTweetPin Question Number 65925 by mathmax by abdo last updated on 05/Aug/19 calculate∫01e−2tln(1−t)dt Commented by mathmax by abdo last updated on 07/Aug/19 letI=∫01e−2tln(1−t)dtwehaveln′(1−t)=−11−t=−∑n=0∞tnfor∣t∣<1⇒ln(1−t)=−∑n=0∞tn+1n+1=−∑n=1∞tnn⇒I=−∫01e−2t(∑n=1∞tnn)dt=−∑n=1∞1n∫01tne−2tdtletAn=∫01tne−2tdtbypsrtsu′=tnandv=e−2tAn=[1n+1tn+1e−2t]01−∫01tn+1n+1(−2)e−2tdt=e−2n+1+2n+1∫01tn+1e−2tdt⇒(n+1)An=e−2+2An+1⇒2An+1=(n+1)An−e−2⇒An+1=(n+1)2An−e−22⇒An=n2An−1−e−22letVn=2Ann!⇒Vn+1−Vn=2An+1(n+1)!−2Ann!=2(n+1)An2(n+1)!−2e−22−2Ann!=Ann!−2Ann!−e−2=−1n!An−e−2⇒∑k=0n−1(Vk+1−Vk)=−∑k=0n−1Akk!−ne−2⇒Vn−V0=−∑k=0n−1Akk!−ne−2⇒Vn=V0−ne−2−∑k=0n−1Akk!…becontinued… Commented by mathmax by abdo last updated on 07/Aug/19 atformofseriewehavee−2t=∑n=0∞(−2t)nn!andln(1−t)=−∑n=1∞tnn⇒e−2tln(1−t)=−(∑n=0∞(−2)ntnn!)(∑n=1∞tnn)=−(1+∑n=1∞(−2)ntnn!)∑n=1∞tnn=−∑n=1∞tnn−(∑n=1∞(−2)ntnn!)(∑n=1∞tnn)=ln(1−t)−∑n=1∞cntnwithcn=∑i+j=1aibj=∑i=1n−1aibn−i=∑i=1n−1(−2)ii!1n−i⇒e−2tln(1−t)=ln(1−t)−∑n=1∞(∑i=1n−1(−2)i(n−i)i!)tn⇒∫01e−2tln(1−t)dt=∫01ln(1−t)dt−∑n=1∞(∑i=1n−1(−2)i(n−i)i!)1n+1∫01ln(1−t)dt=1−t=u−∫01ln(u)(−du)=∫01ln(u)du=[ulnu−u]01=−1⇒∫01ln(1−t)dt=−1−∑n=1∞1n+1(∑i=1n−1(−2)i(n−i)i!) Commented by mathmax by abdo last updated on 07/Aug/19 ∫01e−2tln(1−t)dt=−1−…. Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Find-x-in-the-equation-3-x-1-4-x-1-Next Next post: find-0-e-x-ln-1-x-2-dx-