Menu Close

calculate-0-1-e-2t-ln-1-t-dt-




Question Number 65925 by mathmax by abdo last updated on 05/Aug/19
calculate ∫_0 ^1 e^(−2t) ln(1−t)dt
calculate01e2tln(1t)dt
Commented by mathmax by abdo last updated on 07/Aug/19
let I =∫_0 ^1  e^(−2t) ln(1−t)dt  we have  ln^′ (1−t) =((−1)/(1−t))=−Σ_(n=0) ^∞  t^n    for ∣t∣<1 ⇒ln(1−t) =−Σ_(n=0) ^∞  (t^(n+1) /(n+1)) =−Σ_(n=1) ^∞  (t^n /n) ⇒  I =−∫_0 ^1  e^(−2t) (Σ_(n=1) ^∞  (t^n /n))dt =−Σ_(n=1) ^∞  (1/n) ∫_0 ^1  t^n e^(−2t) dt  let A_n =∫_0 ^1  t^n  e^(−2t) dt   by psrts u^′  =t^n  and v=e^(−2t)   A_n =[(1/(n+1))t^(n+1) e^(−2t) ]_0 ^1 −∫_0 ^1 (t^(n+1) /(n+1))(−2)e^(−2t)  dt  =(e^(−2) /(n+1)) +(2/(n+1)) ∫_0 ^1  t^(n+1) e^(−2t)  dt⇒(n+1)A_n =e^(−2) +2A_(n+1)  ⇒  2A_(n+1) =(n+1)A_n −e^(−2)  ⇒A_(n+1) =(((n+1))/2)A_n −(e^(−2) /2) ⇒  A_n =(n/2)A_(n−1) −(e^(−2) /2)   let  V_n =2(A_n /(n!)) ⇒  V_(n+1) −V_n =2(A_(n+1) /((n+1)!))−2(A_n /(n!)) =2(((n+1)A_n )/(2(n+1)!))−2(e^(−2) /2)−2(A_n /(n!))  =(A_n /(n!))−2(A_n /(n!)) −e^(−2)  =−(1/(n!))A_n −e^(−2)  ⇒Σ_(k=0) ^(n−1) (V_(k+1) −V_k )  =−Σ_(k=0) ^(n−1) (A_k /(k!))−ne^(−2)   ⇒V_n −V_0 =−Σ_(k=0) ^(n−1)  (A_k /(k!)) −ne^(−2)  ⇒  V_n =V_0 −ne^(−2) −Σ_(k=0) ^(n−1)  (A_k /(k!))  ...be continued...
letI=01e2tln(1t)dtwehaveln(1t)=11t=n=0tnfort∣<1ln(1t)=n=0tn+1n+1=n=1tnnI=01e2t(n=1tnn)dt=n=11n01tne2tdtletAn=01tne2tdtbypsrtsu=tnandv=e2tAn=[1n+1tn+1e2t]0101tn+1n+1(2)e2tdt=e2n+1+2n+101tn+1e2tdt(n+1)An=e2+2An+12An+1=(n+1)Ane2An+1=(n+1)2Ane22An=n2An1e22letVn=2Ann!Vn+1Vn=2An+1(n+1)!2Ann!=2(n+1)An2(n+1)!2e222Ann!=Ann!2Ann!e2=1n!Ane2k=0n1(Vk+1Vk)=k=0n1Akk!ne2VnV0=k=0n1Akk!ne2Vn=V0ne2k=0n1Akk!becontinued
Commented by mathmax by abdo last updated on 07/Aug/19
at form of serie  we have e^(−2t)  =Σ_(n=0) ^∞  (((−2t)^n )/(n!))  and ln(1−t) =−Σ_(n=1) ^∞  (t^n /n) ⇒e^(−2t) ln(1−t)  =−(Σ_(n=0) ^∞  (((−2)^n t^n )/(n!)))(Σ_(n=1) ^∞  (t^n /n)) =−(1+Σ_(n=1) ^∞  (((−2)^n t^n )/(n!)))Σ_(n=1) ^∞  (t^n /n)  =−Σ_(n=1) ^∞  (t^n /n) −(Σ_(n=1) ^∞  (((−2)^n t^n )/(n!)))(Σ_(n=1) ^∞  (t^n /n))  =ln(1−t)−Σ_(n=1) ^∞  c_n t^n     with c_n =Σ_(i+j=1) a_i b_j  =Σ_(i=1) ^(n−1) a_i b_(n−i)   =Σ_(i=1) ^(n−1)  (((−2)^i )/(i!))(1/(n−i)) ⇒  e^(−2t) ln(1−t) =ln(1−t)−Σ_(n=1) ^∞ (Σ_(i=1) ^(n−1)  (((−2)^i )/((n−i)i!)))t^n  ⇒  ∫_0 ^1  e^(−2t) ln(1−t)dt =∫_0 ^1 ln(1−t)dt −Σ_(n=1) ^∞ (Σ_(i=1) ^(n−1) (((−2)^i )/((n−i)i!)))(1/(n+1))  ∫_0 ^1 ln(1−t)dt =_(1−t =u)     −∫_0 ^1 ln(u)(−du) =∫_0 ^1 ln(u)du  =[ulnu−u]_0 ^1  =−1 ⇒  ∫_0 ^1 ln(1−t)dt =−1−Σ_(n=1) ^∞  (1/(n+1))(Σ_(i=1) ^(n−1)  (((−2)^i )/((n−i)i!)))
atformofseriewehavee2t=n=0(2t)nn!andln(1t)=n=1tnne2tln(1t)=(n=0(2)ntnn!)(n=1tnn)=(1+n=1(2)ntnn!)n=1tnn=n=1tnn(n=1(2)ntnn!)(n=1tnn)=ln(1t)n=1cntnwithcn=i+j=1aibj=i=1n1aibni=i=1n1(2)ii!1nie2tln(1t)=ln(1t)n=1(i=1n1(2)i(ni)i!)tn01e2tln(1t)dt=01ln(1t)dtn=1(i=1n1(2)i(ni)i!)1n+101ln(1t)dt=1t=u01ln(u)(du)=01ln(u)du=[ulnuu]01=101ln(1t)dt=1n=11n+1(i=1n1(2)i(ni)i!)
Commented by mathmax by abdo last updated on 07/Aug/19
∫_0 ^1  e^(−2t) ln(1−t)dt =−1−....
01e2tln(1t)dt=1.