calculate-0-1-ln-2-x-1-x-2-dx- Tinku Tara June 3, 2023 Integration FacebookTweetPin Question Number 65690 by mathmax by abdo last updated on 02/Aug/19 calculate∫01ln2(x)1+x2dx Commented by mathmax by abdo last updated on 02/Aug/19 letA=∫01ln2x1+x2dxchangementlnx=−tgivex=e−t⇒A=−∫0+∞t21+e−2t(−e−t)dt=∫0∞t2e−t1+e−2tdtA=∫0∞t2e−t(∑n=0∞(−1)ne−2nt)dt=∑n=0∞(−1)n∫0∞t2e−(2n+1)tdt=∑n=0∞(−1)nAnAn=(2n+1)t=u∫0∞u2(2n+1)2e−udu2n+1=1(2n+1)3∫0∞u2e−udubyparts∫0∞u2e−udu=[−u2e−u]0+∞−∫0∞2u(−e−u)du=2∫0∞ue−udu=2{[−ue−u]0+∞−∫0∞(−e−u)du}=2∫0∞e−udu=2[−e−u]0+∞=2⇒An=2(2n+1)3⇒A=2∑n=0∞(−1)n(2n+1)3becontinued…. Commented by ~ À ® @ 237 ~ last updated on 04/Aug/19 LetnamedIthatintegral.whenchangingu=1xdx=−duu2I=∫1∞ln2(u)1+u2duandthen∫0∞ln2(u)1+u2du=2I1+u2=(u−i)(u+i)Withtheresidustheorem2I=2iπRes(f.i)withf(x)=ln2(x)1+x2Res(f.i)=limz−>iln2(z)z+i=[ln(eiπ2)]22i=−π242i=−π28iThen2I=−π34sofinallyI=−π38 Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: evaluate-0-1-sin-x-x-ln-x-dx-Next Next post: sin5-cos0-cos5-sin5-cos5-cos10-sin5-cos55-cos60-