Question Number 65690 by mathmax by abdo last updated on 02/Aug/19
$${calculate}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{{ln}^{\mathrm{2}} \left({x}\right)}{\mathrm{1}+{x}^{\mathrm{2}} }{dx} \\ $$
Commented by mathmax by abdo last updated on 02/Aug/19
$${let}\:{A}\:=\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{{ln}^{\mathrm{2}} {x}}{\mathrm{1}+{x}^{\mathrm{2}} }{dx}\:\:{changement}\:{lnx}\:=−{t}\:{give}\:{x}\:={e}^{−{t}} \:\Rightarrow \\ $$$${A}\:=\:−\int_{\mathrm{0}} ^{+\infty} \:\:\frac{{t}^{\mathrm{2}} }{\mathrm{1}+{e}^{−\mathrm{2}{t}} }\left(−{e}^{−{t}} \right){dt}\:=\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{t}^{\mathrm{2}} {e}^{−{t}} }{\mathrm{1}+{e}^{−\mathrm{2}{t}} }{dt} \\ $$$${A}\:=\int_{\mathrm{0}} ^{\infty} \:\:{t}^{\mathrm{2}} \:{e}^{−{t}} \left(\sum_{{n}=\mathrm{0}} ^{\infty} \left(−\mathrm{1}\right)^{{n}} {e}^{−\mathrm{2}{nt}} \right){dt} \\ $$$$=\sum_{{n}=\mathrm{0}} ^{\infty} \left(−\mathrm{1}\right)^{{n}} \:\int_{\mathrm{0}} ^{\infty} \:\:{t}^{\mathrm{2}} \:{e}^{−\left(\mathrm{2}{n}+\mathrm{1}\right){t}} {dt}=\sum_{{n}=\mathrm{0}} ^{\infty} \left(−\mathrm{1}\right)^{{n}} \:{A}_{{n}} \\ $$$${A}_{{n}} =_{\left(\mathrm{2}{n}+\mathrm{1}\right){t}\:={u}} \:\:\:\:\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{u}^{\mathrm{2}} }{\left(\mathrm{2}{n}+\mathrm{1}\right)^{\mathrm{2}} }\:{e}^{−{u}} \frac{{du}}{\mathrm{2}{n}+\mathrm{1}}\:=\frac{\mathrm{1}}{\left(\mathrm{2}{n}+\mathrm{1}\right)^{\mathrm{3}} }\int_{\mathrm{0}} ^{\infty} \:{u}^{\mathrm{2}} {e}^{−{u}} {du} \\ $$$${by}\:{parts}\:\int_{\mathrm{0}} ^{\infty} \:{u}^{\mathrm{2}} {e}^{−{u}} \:{du}\:=\left[−{u}^{\mathrm{2}} \:{e}^{−{u}} \right]_{\mathrm{0}} ^{+\infty} −\int_{\mathrm{0}} ^{\infty} \:\mathrm{2}{u}\left(−{e}^{−{u}} \right){du} \\ $$$$=\mathrm{2}\:\int_{\mathrm{0}} ^{\infty} \:{u}\:{e}^{−{u}} {du}\:=\mathrm{2}\left\{\left[−{ue}^{−{u}} \right]_{\mathrm{0}} ^{+\infty} −\int_{\mathrm{0}} ^{\infty} \:\left(−{e}^{−{u}} \right){du}\right\} \\ $$$$=\mathrm{2}\int_{\mathrm{0}} ^{\infty} \:{e}^{−{u}} \:{du}\:=\mathrm{2}\left[−{e}^{−{u}} \right]_{\mathrm{0}} ^{+\infty} \:=\mathrm{2}\:\Rightarrow{A}_{{n}} =\frac{\mathrm{2}}{\left(\mathrm{2}{n}+\mathrm{1}\right)^{\mathrm{3}} }\:\Rightarrow \\ $$$${A}\:=\mathrm{2}\sum_{{n}=\mathrm{0}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{{n}} }{\left(\mathrm{2}{n}+\mathrm{1}\right)^{\mathrm{3}} }\:\:\:{be}\:{continued}…. \\ $$
Commented by ~ À ® @ 237 ~ last updated on 04/Aug/19
$${Let}\:{named}\:{I}\:{that}\:{integral}.{when}\:{changing}\:{u}=\frac{\mathrm{1}}{{x}}\:\:\:\:{dx}=\frac{−{du}}{{u}^{\mathrm{2}} }\:\:\:\: \\ $$$${I}=\int_{\mathrm{1}} ^{\infty} \:\frac{{ln}^{\mathrm{2}} \left({u}\right)}{\mathrm{1}+{u}^{\mathrm{2}} }{du}\:\:\:{and}\:{then}\:\int_{\mathrm{0}} ^{\infty} \frac{{ln}^{\mathrm{2}} \left({u}\right)}{\mathrm{1}+{u}^{\mathrm{2}} }{du}=\mathrm{2}{I} \\ $$$$\mathrm{1}+{u}^{\mathrm{2}} =\left({u}−{i}\right)\left({u}+{i}\right) \\ $$$${With}\:{the}\:{residus}\:{theorem}\:\mathrm{2}{I}=\mathrm{2}{i}\pi{Res}\left({f}.\:\:{i}\right)\:\:{with}\:{f}\left({x}\right)=\frac{{ln}^{\mathrm{2}} \left({x}\right)}{\mathrm{1}+{x}^{\mathrm{2}} } \\ $$$${Res}\left({f}.\:\:{i}\right)={lim}_{{z}−>{i}} \:\:\frac{{ln}^{\mathrm{2}} \left({z}\right)}{{z}+{i}}=\frac{\left[{ln}\left({e}^{{i}\frac{\pi}{\mathrm{2}}} \right)\right]^{\mathrm{2}} }{\mathrm{2}{i}}=\frac{\frac{−\pi^{\mathrm{2}} }{\mathrm{4}}}{\mathrm{2}{i}}=\frac{−\pi^{\mathrm{2}} }{\mathrm{8}{i}} \\ $$$${Then}\:\:\mathrm{2}{I}=\frac{−\pi^{\mathrm{3}} }{\mathrm{4}} \\ $$$${so}\:{finally}\:\:\:{I}=\:\frac{−\pi^{\mathrm{3}} }{\mathrm{8}} \\ $$