Menu Close

calculate-0-1-ln-2-x-1-x-2-dx-




Question Number 65690 by mathmax by abdo last updated on 02/Aug/19
calculate ∫_0 ^1  ((ln^2 (x))/(1+x^2 ))dx
calculate01ln2(x)1+x2dx
Commented by mathmax by abdo last updated on 02/Aug/19
let A =∫_0 ^1  ((ln^2 x)/(1+x^2 ))dx  changement lnx =−t give x =e^(−t)  ⇒  A = −∫_0 ^(+∞)   (t^2 /(1+e^(−2t) ))(−e^(−t) )dt = ∫_0 ^∞   ((t^2 e^(−t) )/(1+e^(−2t) ))dt  A =∫_0 ^∞   t^2  e^(−t) (Σ_(n=0) ^∞ (−1)^n e^(−2nt) )dt  =Σ_(n=0) ^∞ (−1)^n  ∫_0 ^∞   t^2  e^(−(2n+1)t) dt=Σ_(n=0) ^∞ (−1)^n  A_n   A_n =_((2n+1)t =u)      ∫_0 ^∞   (u^2 /((2n+1)^2 )) e^(−u) (du/(2n+1)) =(1/((2n+1)^3 ))∫_0 ^∞  u^2 e^(−u) du  by parts ∫_0 ^∞  u^2 e^(−u)  du =[−u^2  e^(−u) ]_0 ^(+∞) −∫_0 ^∞  2u(−e^(−u) )du  =2 ∫_0 ^∞  u e^(−u) du =2{[−ue^(−u) ]_0 ^(+∞) −∫_0 ^∞  (−e^(−u) )du}  =2∫_0 ^∞  e^(−u)  du =2[−e^(−u) ]_0 ^(+∞)  =2 ⇒A_n =(2/((2n+1)^3 )) ⇒  A =2Σ_(n=0) ^∞  (((−1)^n )/((2n+1)^3 ))   be continued....
letA=01ln2x1+x2dxchangementlnx=tgivex=etA=0+t21+e2t(et)dt=0t2et1+e2tdtA=0t2et(n=0(1)ne2nt)dt=n=0(1)n0t2e(2n+1)tdt=n=0(1)nAnAn=(2n+1)t=u0u2(2n+1)2eudu2n+1=1(2n+1)30u2eudubyparts0u2eudu=[u2eu]0+02u(eu)du=20ueudu=2{[ueu]0+0(eu)du}=20eudu=2[eu]0+=2An=2(2n+1)3A=2n=0(1)n(2n+1)3becontinued.
Commented by ~ À ® @ 237 ~ last updated on 04/Aug/19
Let named I that integral.when changing u=(1/x)    dx=((−du)/u^2 )      I=∫_1 ^∞  ((ln^2 (u))/(1+u^2 ))du   and then ∫_0 ^∞ ((ln^2 (u))/(1+u^2 ))du=2I  1+u^2 =(u−i)(u+i)  With the residus theorem 2I=2iπRes(f.  i)  with f(x)=((ln^2 (x))/(1+x^2 ))  Res(f.  i)=lim_(z−>i)   ((ln^2 (z))/(z+i))=(([ln(e^(i(π/2)) )]^2 )/(2i))=(((−π^2 )/4)/(2i))=((−π^2 )/(8i))  Then  2I=((−π^3 )/4)  so finally   I= ((−π^3 )/8)
LetnamedIthatintegral.whenchangingu=1xdx=duu2I=1ln2(u)1+u2duandthen0ln2(u)1+u2du=2I1+u2=(ui)(u+i)Withtheresidustheorem2I=2iπRes(f.i)withf(x)=ln2(x)1+x2Res(f.i)=limz>iln2(z)z+i=[ln(eiπ2)]22i=π242i=π28iThen2I=π34sofinallyI=π38