calculate-0-1-x-2-2-x-2-x-4-dx- Tinku Tara June 3, 2023 Integration 0 Comments FacebookTweetPin Question Number 72396 by mathmax by abdo last updated on 28/Oct/19 calculate∫0∞1+x22+x2+x4dx Commented by mathmax by abdo last updated on 29/Oct/19 letA=∫0∞1+x2x4+x2+2dx⇒2A=∫−∞+∞x2+1x4+x2+2dxletW(z)=z2+1z4+z2+2polesofW?z4+z2+2=0⇒t2+t+2=0witht=z2Δ=1−8=−7⇒t1=−1+i72andt2=−1−i72∣t1∣=121+7=12(22)=2⇒t1=2e−iarctan(7)t2=conj(t1)=2eiarctan(7)⇒W(z)=z2+1(z2−2eiarctan(7))(z2−2e−iarctan(7))=z2+1(z−(42)ei2arctan(7))(z+(42)ei2arctan(7))(z−(42)e−i2arctan(7))(z+(42)e−i2arctan(7))∫−∞+∞W(z)dz=2iπ{Res(W,42ei2arctan(7))+Res(W,−42e−i2arctan(7)}…becontinued…. Commented by mathmax by abdo last updated on 30/Oct/19 Res(W,42ei2arctan(7))=1+2eiarctan(7)242ei2arctan(7)(2)(2i)sin(arctan(7))=1+2eiarctan(7)(4i)2(42)ei2arctan(7)sin(arctan7)Res(W,−42e−i2arctan(7))=1+2e−iarctan(7)−2(2i)sin(arctan(7))(−242e−i2arctan(7))=1+2e−iarctan(7)(4i)2(42)e−i2arctan(7)sin(arctan7)⇒∫−∞+∞W(z)dz=2iπ{e−i2arctan(7)+2ei2arctan(7)(4i)2(42)sin(arctan(7)+e−i2arctan(7)+2e−i2arctan(7)(4i)2(42)sin(arctan7)}resttocompletethecalculus. Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Solve-the-partial-fraction-4s-3-39-2-s-2-42s-40-s-s-2-s-2-6s-10-Next Next post: Find-the-area-bounded-by-one-leaf-of-the-rose-r-12cos-3- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.