Menu Close

calculate-0-1-x-2-2-x-2-x-4-dx-




Question Number 72396 by mathmax by abdo last updated on 28/Oct/19
calculate ∫_0 ^∞    ((1+x^2 )/(2+x^2  +x^4 ))dx
calculate01+x22+x2+x4dx
Commented by mathmax by abdo last updated on 29/Oct/19
let A =∫_0 ^∞  ((1+x^2 )/(x^4  +x^2  +2))dx ⇒2A =∫_(−∞) ^(+∞)  ((x^2  +1)/(x^(4 ) +x^2  +2))dx  let W(z)=((z^2  +1)/(z^4  +z^2  +2))  poles of W?  z^4  +z^2  +2 =0 ⇒t^2  +t +2 =0  with t=z^2   Δ=1−8 =−7 ⇒t_1 =((−1+i(√7))/2) and t_2 =((−1−i(√7))/2)  ∣t_1 ∣ =(1/2)(√(1+7))=(1/2)(2(√2))=(√2) ⇒t_1 =(√2)e^(−iarctan((√7)))   t_2 =conj(t_1 )=(√2)e^(iarctan((√7)))  ⇒W(z)=((z^2  +1)/((z^2 −(√2)e^(iarctan((√7))) )(z^2 −(√2)e^(−iarctan((√7))) )))  =((z^2  +1)/((z−(^4 (√2))e^((i/2)arctan((√7))) )(z+(^4 (√2))e^((i/2)arctan((√7))) )(z−(^4 (√2))e^(−(i/2)arctan((√7))) )(z+(^4 (√2))e^(−(i/2)arctan((√7))) )))  ∫_(−∞) ^(+∞) W(z)dz =2iπ{ Res(W,^4 (√2)e^((i/2)arctan((√7))) )+Res(W,−^4 (√2)e^(−(i/2)arctan((√7))) }  ...be continued....
letA=01+x2x4+x2+2dx2A=+x2+1x4+x2+2dxletW(z)=z2+1z4+z2+2polesofW?z4+z2+2=0t2+t+2=0witht=z2Δ=18=7t1=1+i72andt2=1i72t1=121+7=12(22)=2t1=2eiarctan(7)t2=conj(t1)=2eiarctan(7)W(z)=z2+1(z22eiarctan(7))(z22eiarctan(7))=z2+1(z(42)ei2arctan(7))(z+(42)ei2arctan(7))(z(42)ei2arctan(7))(z+(42)ei2arctan(7))+W(z)dz=2iπ{Res(W,42ei2arctan(7))+Res(W,42ei2arctan(7)}becontinued.
Commented by mathmax by abdo last updated on 30/Oct/19
Res(W,^4 (√2)e^((i/2)arctan((√7))) )=((1+(√2)e^(iarctan((√7))) )/(2^4 (√2)e^((i/2)arctan((√7))) ((√2))(2i)sin(arctan((√7)))))  =((1+(√2)e^(iarctan((√7))) )/((4i)(√2)(^4 (√2))e^((i/2)arctan((√7)))   sin(arctan(√7))))  Res(W,−^4 (√2)e^(−(i/2)arctan((√7))) )=((1+(√2)e^(−iarctan((√7))) )/(−(√2)(2i)sin(arctan((√7)))(−2^4 (√2)e^(−(i/2)arctan((√7))) )))  =((1+(√2)e^(−iarctan((√7))) )/((4i)(√2)(^4 (√2)) e^(−(i/2)arctan((√7))) sin(arctan(√7)))) ⇒  ∫_(−∞) ^(+∞) W(z)dz =2iπ{((e^(−(i/2)arctan((√7))) +(√2)e^((i/2)arctan((√7))) )/((4i)(√2)(^4 (√2))sin(arctan((√7))))  +((e^(−(i/2)arctan((√7))) +(√2) e^(−(i/2)arctan((√7))) )/((4i)(√2)(^4 (√2)) sin(arctan(√7))))}   rest to complete the calculus.
Res(W,42ei2arctan(7))=1+2eiarctan(7)242ei2arctan(7)(2)(2i)sin(arctan(7))=1+2eiarctan(7)(4i)2(42)ei2arctan(7)sin(arctan7)Res(W,42ei2arctan(7))=1+2eiarctan(7)2(2i)sin(arctan(7))(242ei2arctan(7))=1+2eiarctan(7)(4i)2(42)ei2arctan(7)sin(arctan7)+W(z)dz=2iπ{ei2arctan(7)+2ei2arctan(7)(4i)2(42)sin(arctan(7)+ei2arctan(7)+2ei2arctan(7)(4i)2(42)sin(arctan7)}resttocompletethecalculus.

Leave a Reply

Your email address will not be published. Required fields are marked *