Menu Close

calculate-0-1-x-4-1-x-6-1-dx-




Question Number 66326 by mathmax by abdo last updated on 12/Aug/19
calculate ∫_0 ^1    ((x^4  +1)/(x^6 +1))dx
calculate01x4+1x6+1dx
Commented by Prithwish sen last updated on 13/Aug/19
((x^4 +1)/(x^6 +1)) = (A/(x^2 +1)) + (B/(x^2 +(√3)x+1)) +(C/(x^2 −(√3)x+1))  x^4 +1= x^4 (A+B+C)+x^3 ((√3)C−(√3)B)+x^2 (2B+2C−A)+x((√3)C−(√3)B)+(A+B+C)  ⇒A+B+C = 1  (√3)C−(√3)B=0  2B+2C−A=0  A+B+C=0  A=(2/3) B=(1/6) C=(1/6)  ∫((2dx)/(3(1+x^2 ))) +(1/6)∫(dx/((x+((√3)/2))^2 +((1/2))^2 )) +(1/6) ∫(dx/((x−((√3)/2))^2 +((1/2))^2 ))
x4+1x6+1=Ax2+1+Bx2+3x+1+Cx23x+1x4+1=x4(A+B+C)+x3(3C3B)+x2(2B+2CA)+x(3C3B)+(A+B+C)A+B+C=13C3B=02B+2CA=0A+B+C=0A=23B=16C=162dx3(1+x2)+16dx(x+32)2+(12)2+16dx(x32)2+(12)2
Commented by mathmax by abdo last updated on 13/Aug/19
thank you sir.
thankyousir.
Commented by Prithwish sen last updated on 13/Aug/19
welome
welome
Commented by mathmax by abdo last updated on 13/Aug/19
∫_0 ^(+∞)  ((x^4  +1)/(x^6 +1))dx =∫_0 ^1   ((x^4  +1)/(x^6  +1))dx +∫_1 ^(+∞)   ((x^4  +1)/(x^6  +1))dx but  ∫_1 ^(+∞)  ((x^4  +1)/(x^6  +1))dx =_(x=(1/t))    −∫_0 ^1   (((1/t^4 )+1)/((1/t^6 )+1))(−(dt/t^2 )) =∫_0 ^1  ((1+t^4 )/(1+t^6 ))dt ⇒  ∫_0 ^∞   ((x^4  +1)/(x^6  +1))dx =2 ∫_0 ^1  ((x^4  +1)/(x^6  +1))dx ⇒∫_0 ^1  ((x^4  +1)/(x^6  +1))dx=(1/2)∫_0 ^∞  (x^4 /(1+x^6 ))dx +(1/2)∫_0 ^∞  (dx/(1+x^6 ))  changement x =t^(1/6)   give ∫_0 ^∞   (x^4 /(1+x^6 ))dx =∫_0 ^∞  (t^(2/3) /(1+t))(1/6)t^((1/6)−1) dt  =(1/6)∫_0 ^∞   (t^((2/3)+(1/6)−1) /(1+t))dt =(1/6)∫_0 ^∞   (t^((5/6)−1) /(1+t))dt =(1/6)(π/(sin(((5π)/6)))) =(π/6)×2=(π/3)  ∫_0 ^∞  (dx/(1+x^6 )) =_(x=t^(1/6) )     (1/6)∫_0 ^∞     (t^((1/6)−1) /(1+t))dt=(1/6)(π/(sin((π/6)))) =(π/6)×2 =(π/3) ⇒  ∫_0 ^1   ((x^4  +1)/(x^6  +1))dx =(π/6)+(π/6) =(π/3)
0+x4+1x6+1dx=01x4+1x6+1dx+1+x4+1x6+1dxbut1+x4+1x6+1dx=x=1t011t4+11t6+1(dtt2)=011+t41+t6dt0x4+1x6+1dx=201x4+1x6+1dx01x4+1x6+1dx=120x41+x6dx+120dx1+x6changementx=t16give0x41+x6dx=0t231+t16t161dt=160t23+1611+tdt=160t5611+tdt=16πsin(5π6)=π6×2=π30dx1+x6=x=t16160t1611+tdt=16πsin(π6)=π6×2=π301x4+1x6+1dx=π6+π6=π3

Leave a Reply

Your email address will not be published. Required fields are marked *