calculate-0-2pi-x-sin-d-x-2-2x-sin-1-2- Tinku Tara June 3, 2023 Integration 0 Comments FacebookTweetPin Question Number 74514 by mathmax by abdo last updated on 25/Nov/19 calculate∫02π(x−sinθ)dθ(x2−2xsinθ+1)2 Commented by mathmax by abdo last updated on 26/Nov/19 wehaveprovedthat∫0πdtx2−2xsin(2t)+1=π1−x2if∣x∣<1and=πx2−1if∣x∣>1letf(x)=∫0πdtx2−2xsin(2t)+1⇒f(x)=2t=θ∫02πdθ2(x2−2xsinθ+1)⇒2f′(x)=−∫02π2x−2sinθ(x2(2xsinθ+1)2dθ⇒∫02π(x−sinθ)(x2−2xsinθ+1)2dθ=−f′(x)∣x∣<1⇒f′(x)=−π−2x(1−x2)2=2πx(1−x2)2∣x∣>1⇒f′(x)=−π(2x)(x2−1)2=−2πx(x2−1)2sothevalueofthisintegralisknown. Answered by mind is power last updated on 25/Nov/19 useproviousQuationf(x)=∫0πdθx2−2sin(2θ)x+1u=2θf(x)=∫02πdu2(x2−2sin(u)x+1)⇒2f(x)=∫02πdux2−2sin(u)x+1={πxx2−1,x>1π1−x2,0<x<12f′(x)=∫02π−2x+2sin(u)(x2−2xsin(u)+1)2⇒−f′(x)=∫02πx−sin(u)(x2−2xsin(u)+1)2duf′(x)=π.(−x2−1(x2+1)2)0⩽x<1f′(x)=2xπ(1−x2)2,x>1 Commented by mathmax by abdo last updated on 26/Nov/19 thankyousir. Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: prove-that-lim-n-n-2k-1-cos-k-2pi-n-pi-Next Next post: prove-that-0-1-e-x-1-e-2x-dx-x-ln-2-1-4-4-2pi-n-1-2n-1-2n-1-n-1-e- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.