Menu Close

calculate-0-2pi-x-sin-d-x-2-2x-sin-1-2-




Question Number 74514 by mathmax by abdo last updated on 25/Nov/19
calculate ∫_0 ^(2π)    (((x−sinθ)dθ)/((x^2 −2x sinθ +1)^2 ))
calculate02π(xsinθ)dθ(x22xsinθ+1)2
Commented by mathmax by abdo last updated on 26/Nov/19
we have proved that ∫_0 ^π   (dt/(x^2 −2xsin(2t)+1)) =(π/(1−x^2 )) if ∣x∣<1 and  =(π/(x^2 −1)) if ∣x∣>1  let f(x)=∫_0 ^π  (dt/(x^2 −2x sin(2t)+1)) ⇒  f(x)=_(2t =θ)   ∫_0 ^(2π)   (dθ/(2(x^2 −2xsinθ +1))) ⇒2f^′ (x)=−∫_0 ^(2π)  ((2x−2sinθ)/((x^2 (2xsinθ +1)^2 ))dθ ⇒  ∫_0 ^(2π)  (((x−sinθ))/((x^2 −2xsinθ +1)^2 ))dθ =−f^′ (x)  ∣x∣<1 ⇒f^′ (x)=−π((−2x)/((1−x^2 )^2 )) =((2πx)/((1−x^2 )^2 ))  ∣x∣>1 ⇒f^′ (x)=−((π (2x))/((x^2 −1)^2 )) =((−2πx)/((x^2 −1)^2 )) so the value of this integral  is known.
wehaveprovedthat0πdtx22xsin(2t)+1=π1x2ifx∣<1and=πx21ifx∣>1letf(x)=0πdtx22xsin(2t)+1f(x)=2t=θ02πdθ2(x22xsinθ+1)2f(x)=02π2x2sinθ(x2(2xsinθ+1)2dθ02π(xsinθ)(x22xsinθ+1)2dθ=f(x)x∣<1f(x)=π2x(1x2)2=2πx(1x2)2x∣>1f(x)=π(2x)(x21)2=2πx(x21)2sothevalueofthisintegralisknown.
Answered by mind is power last updated on 25/Nov/19
use provious Quation  f(x)=∫_0 ^π (dθ/(x^2 −2sin(2θ)x+1))  u=2θ  f(x)=∫_0 ^(2π) (du/(2(x^2 −2sin(u)x+1)))  ⇒2f(x)=∫_0 ^(2π) (du/(x^2 −2sin(u)x+1))= { ((((πx)/(x^2 −1)),  x>1)),(((π/(1−x^2 )),   0<x<1)) :}  2f′(x)=∫_0 ^(2π) ((−2x+2sin(u))/((x^2 −2xsin(u)+1)^2 ))  ⇒−f′(x)=∫_0 ^(2π) ((x−sin(u))/((x^2 −2xsin(u)+1)^2 ))du  f′(x)=π.(((−x^2 −1)/((x^2 +1)^2 )))      0≤x<1  f′(x)=((2xπ)/((1−x^2 )^2 )),x>1
useproviousQuationf(x)=0πdθx22sin(2θ)x+1u=2θf(x)=02πdu2(x22sin(u)x+1)2f(x)=02πdux22sin(u)x+1={πxx21,x>1π1x2,0<x<12f(x)=02π2x+2sin(u)(x22xsin(u)+1)2f(x)=02πxsin(u)(x22xsin(u)+1)2duf(x)=π.(x21(x2+1)2)0x<1f(x)=2xπ(1x2)2,x>1
Commented by mathmax by abdo last updated on 26/Nov/19
thank you sir.
thankyousir.

Leave a Reply

Your email address will not be published. Required fields are marked *