calculate-0-4pi-d-x-2-2x-cos-1-2- Tinku Tara June 3, 2023 Integration 0 Comments FacebookTweetPin Question Number 141222 by mathmax by abdo last updated on 16/May/21 calculate∫04πdθ(x2+2xcosθ+1)2 Answered by Ar Brandon last updated on 16/May/21 Ω=∫04πdθ(x2+2xcosθ+1)2=4∫0πdθ(x2+2xcosθ+1)2,t=tanθ2=4∫0∞2dt(x2+2x⋅1−t21+t2+1)2⋅11+t2=8∫0∞t2+1(x2(1+t2)+2x(1−t2)+1+t2)2dt=8∫0∞t2+1((x2−2x+1)t2+(x2+2x+1))2dt=8∫0∞t2+1((x−1)2t2+(x+1)2)2=8(x−1)4∫0∞t2+1(t2+(x+1x−1)2)2=8(x−1)4{∫0∞t2+(x+1x−1)2(t2+(x+1x−1)2)2dt+∫0∞1−(x+1x−1)2(t2+(x+1x−1)2)2dt}f(a)=∫0∞dtt2+a2=π2a⇒f′(a)=−∫0∞2a(t2+a2)2dt=−π2a2⇒∫0∞dt(t2+a2)2=π4a3Ω=8(x−1)4{π2(x+1x−1)+(1−(x+1x−1)2)×π4(x+1x−1)3} Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: p-p-1-dp-Next Next post: Question-141221 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.