Menu Close

calculate-0-4pi-d-x-2-2x-cos-1-2-




Question Number 141222 by mathmax by abdo last updated on 16/May/21
calculate ∫_0 ^(4π)   (dθ/((x^2 +2x cosθ +1)^2 ))
calculate04πdθ(x2+2xcosθ+1)2
Answered by Ar Brandon last updated on 16/May/21
Ω=∫_0 ^(4π) (dθ/((x^2 +2xcosθ+1)^2 ))=4∫_0 ^π (dθ/((x^2 +2xcosθ+1)^2 )), t=tan(θ/2)      =4∫_0 ^∞ ((2dt)/((x^2 +2x∙((1−t^2 )/(1+t^2 ))+1)^2 ))∙(1/(1+t^2 ))      =8∫_0 ^∞ ((t^2 +1)/((x^2 (1+t^2 )+2x(1−t^2 )+1+t^2 )^2 ))dt      =8∫_0 ^∞ ((t^2 +1)/(((x^2 −2x+1)t^2 +(x^2 +2x+1))^2 ))dt      =8∫_0 ^∞ ((t^2 +1)/(((x−1)^2 t^2 +(x+1)^2 )^2 ))=(8/((x−1)^4 ))∫_0 ^∞ ((t^2 +1)/((t^2 +(((x+1)/(x−1)))^2 )^2 ))      =(8/((x−1)^4 )){∫_0 ^∞ ((t^2 +(((x+1)/(x−1)))^2 )/((t^2 +(((x+1)/(x−1)))^2 )^2 ))dt+∫_0 ^∞ ((1−(((x+1)/(x−1)))^2 )/((t^2 +(((x+1)/(x−1)))^2 )^2 ))dt}  f(a)=∫_0 ^∞ (dt/(t^2 +a^2 ))=(π/(2a))⇒f ′(a)=−∫_0 ^∞ ((2a)/((t^2 +a^2 )^2 ))dt=−(π/(2a^2 ))  ⇒∫_0 ^∞ (dt/((t^2 +a^2 )^2 ))=(π/(4a^3 ))  Ω=(8/((x−1)^4 )){(π/(2(((x+1)/(x−1)))))+(1−(((x+1)/(x−1)))^2 )×(π/(4(((x+1)/(x−1)))^3 ))}
Ω=04πdθ(x2+2xcosθ+1)2=40πdθ(x2+2xcosθ+1)2,t=tanθ2=402dt(x2+2x1t21+t2+1)211+t2=80t2+1(x2(1+t2)+2x(1t2)+1+t2)2dt=80t2+1((x22x+1)t2+(x2+2x+1))2dt=80t2+1((x1)2t2+(x+1)2)2=8(x1)40t2+1(t2+(x+1x1)2)2=8(x1)4{0t2+(x+1x1)2(t2+(x+1x1)2)2dt+01(x+1x1)2(t2+(x+1x1)2)2dt}f(a)=0dtt2+a2=π2af(a)=02a(t2+a2)2dt=π2a20dt(t2+a2)2=π4a3Ω=8(x1)4{π2(x+1x1)+(1(x+1x1)2)×π4(x+1x1)3}

Leave a Reply

Your email address will not be published. Required fields are marked *