Question Number 73338 by mathmax by abdo last updated on 10/Nov/19
$${calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{arctan}\left(\mathrm{2}{cosx}\right)}{\mathrm{3}+{x}^{\mathrm{2}} }{dx} \\ $$
Commented by mathmax by abdo last updated on 11/Nov/19
$${let}\:{I}\:=\int_{\mathrm{0}} ^{\infty} \:\:\frac{{arctan}\left(\mathrm{2}{cosx}\right)}{{x}^{\mathrm{2}} \:+\mathrm{3}}{dx}\:\Rightarrow{I}\:=_{{x}=\sqrt{\mathrm{3}}{t}} \:\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{arctan}\left(\mathrm{2}{cos}\left(\sqrt{\mathrm{3}}{t}\right)\right)}{\mathrm{3}\left({t}^{\mathrm{2}} \:+\mathrm{1}\right)}\sqrt{\mathrm{3}}{dt} \\ $$$$=\frac{\mathrm{1}}{\:\sqrt{\mathrm{3}}}\int_{\mathrm{0}} ^{\infty} \:\:\frac{{arctan}\left(\mathrm{2}{cos}\left(\sqrt{\mathrm{3}}{t}\right)\right)}{{t}^{\mathrm{2}} \:+\mathrm{1}}{dt}\:\Rightarrow\mathrm{2}\sqrt{\mathrm{3}}{I}\:=\int_{−\infty} ^{+\infty} \:\frac{{arctan}\left(\mathrm{2}{cos}\left(\sqrt{\mathrm{3}}{t}\right)\right.}{{t}^{\mathrm{2}} \:+\mathrm{1}}{dt} \\ $$$${let}\:{w}\left({z}\right)\:=\frac{{arctan}\left(\mathrm{2}{cos}\left(\sqrt{\mathrm{3}}{z}\right)\right)}{{z}^{\mathrm{2}} \:+\mathrm{1}}\:=\frac{{arctan}\left(\mathrm{2}{cos}\left(\sqrt{\mathrm{3}}{z}\right)\right)}{\left({z}−{i}\right)\left({z}+{i}\right)} \\ $$$$\int_{−\infty} ^{+\infty} \:{w}\left({z}\right){dz}\:=\mathrm{2}{i}\pi\:{Res}\left({w},{i}\right) \\ $$$${Res}\left({w},{i}\right)\:=\frac{{arctan}\left(\mathrm{2}{cos}\left({i}\sqrt{\mathrm{3}}\right)\right)}{\mathrm{2}{i}}\:\Rightarrow\int_{−\infty} ^{+\infty} {w}\left({z}\right){dz}\:=\mathrm{2}{i}\pi×\frac{{arctan}\left(\mathrm{2}{cos}\left({i}\sqrt{\mathrm{3}}\right)\right)}{\mathrm{2}{i}} \\ $$$$=\pi\:{arctan}\left(\mathrm{2}{cos}\left({i}\sqrt{\mathrm{3}}\right)\right)\:\:{but} \\ $$$${cos}\left({i}\sqrt{\mathrm{3}}\right)={ch}\left(\sqrt{\mathrm{3}}\right)\:=\frac{{e}^{\sqrt{\mathrm{3}}} \:+{e}^{−\sqrt{\mathrm{3}}} }{\mathrm{2}}\:\Rightarrow{arctan}\left(\mathrm{2}{cos}\left({i}\sqrt{\mathrm{3}}\right)\right) \\ $$$$={arctan}\left({e}^{\sqrt{\mathrm{3}}} \:+{e}^{−\sqrt{\mathrm{3}}} \right)\:\Rightarrow\int_{−\infty} ^{+\infty} {w}\left(\right){dz}\:=\pi\:{arctan}\left({e}^{\sqrt{\mathrm{3}}} \:+{e}^{−\sqrt{\mathrm{3}}} \right)\:\Rightarrow \\ $$$${I}\:=\frac{\pi}{\mathrm{2}\sqrt{\mathrm{3}}}\:{arctan}\left({e}^{\sqrt{\mathrm{3}}} \:+{e}^{−\sqrt{\mathrm{3}}} \right)\:. \\ $$