Question Number 74484 by mathmax by abdo last updated on 24/Nov/19
$${calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{arctan}\left(\mathrm{2}{x}\right)}{{x}^{\mathrm{2}} +\mathrm{3}}{dx} \\ $$
Commented by mathmax by abdo last updated on 26/Nov/19
$${let}\:{f}\left({t}\right)=\int_{\mathrm{0}} ^{\infty} \:\:\frac{{arctan}\left({tx}\right)}{{x}^{\mathrm{2}} \:+\mathrm{3}}{dx}\:\:\:\:{with}\:{t}\geqslant\mathrm{0} \\ $$$${f}^{'} \left({t}\right)\:=\int_{\mathrm{0}} ^{\infty} \:\:\frac{{x}}{\left(\mathrm{1}+{t}^{\mathrm{2}} {x}^{\mathrm{2}} \right)\left({x}^{\mathrm{2}} +\mathrm{3}\right)}{dx}\:\:=_{{tx}={u}} \:\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{u}}{{t}\left(\mathrm{1}+{u}^{\mathrm{2}} \right)\left(\frac{{u}^{\mathrm{2}} }{{t}^{\mathrm{2}} }+\mathrm{3}\right)}\frac{{du}}{{t}} \\ $$$$=\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{udu}}{\left({u}^{\mathrm{2}} +\mathrm{1}\right)\left({u}^{\mathrm{2}} +\mathrm{3}{t}^{\mathrm{2}} \right)}\:{decompsition}\:{of}\:{F}\left({u}\right)=\frac{\mathrm{1}}{\left({u}^{\mathrm{2}} +\mathrm{1}\right)\left({u}^{\mathrm{2}} +\mathrm{3}{t}^{\mathrm{2}} \right)} \\ $$$${F}\left({u}\right)=\frac{{au}+{b}}{{u}^{\mathrm{2}} +\mathrm{1}}\:+\frac{{cu}\:+{d}}{{u}^{\mathrm{2}} \:+\mathrm{3}{t}^{\mathrm{2}} } \\ $$$${F}\left(−{u}\right)={F}\left({u}\right)\:\Rightarrow\frac{−{au}+{b}}{{u}^{\mathrm{2}} \:+\mathrm{1}}\:+\frac{−{cu}+{d}}{{u}^{\mathrm{2}} \:+\mathrm{3}{t}^{\mathrm{2}} }\:={F}\left({u}\right)\:\Rightarrow{a}={c}=\mathrm{0}\:\Rightarrow \\ $$$${F}\left({u}\right)\:=\frac{{b}}{{u}^{\mathrm{2}} +\mathrm{1}}\:+\frac{{d}}{{u}^{\mathrm{2}} \:+\mathrm{3}{t}^{\mathrm{2}} } \\ $$$${lim}_{{u}\rightarrow+\infty} {u}^{\mathrm{2}} {F}\left({u}\right)\:=\mathrm{0}\:={b}+{d}\:\Rightarrow{d}=−{b}\:\Rightarrow{F}\left({u}\right)=\frac{{b}}{{u}^{\mathrm{2}} \:+\mathrm{1}}−\frac{{b}}{{u}^{\mathrm{2}} \:+\mathrm{3}{t}^{\mathrm{2}} } \\ $$$${F}\left(\mathrm{0}\right)=\frac{\mathrm{1}}{\mathrm{3}{t}^{\mathrm{2}} }\:={b}−\frac{{b}}{\mathrm{3}{t}^{\mathrm{2}} }\:=\left(\frac{\mathrm{3}{t}^{\mathrm{2}} −\mathrm{1}}{\mathrm{3}{t}^{\mathrm{2}} }\right){b}\:\Rightarrow{b}=\frac{\mathrm{1}}{\mathrm{3}{t}^{\mathrm{2}} −\mathrm{1}}\:\Rightarrow \\ $$$${F}\left({u}\right)\:=\frac{\mathrm{1}}{\mathrm{3}{t}^{\mathrm{2}} −\mathrm{1}}\left\{\frac{\mathrm{1}}{{u}^{\mathrm{2}} +\mathrm{1}}−\frac{\mathrm{1}}{{u}^{\mathrm{2}} \:+\mathrm{3}{t}^{\mathrm{2}} }\right\}\:\Rightarrow \\ $$$${f}^{'} \left({t}\right)=\frac{\mathrm{1}}{\mathrm{3}{t}^{\mathrm{2}} −\mathrm{1}}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{du}}{\mathrm{1}+{u}^{\mathrm{2}} }−\frac{\mathrm{1}}{\mathrm{3}{t}^{\mathrm{2}} −\mathrm{1}}\int_{\mathrm{0}} ^{\infty} \:\:\frac{{du}}{{u}^{\mathrm{2}} \:+\mathrm{3}{t}^{\mathrm{2}} } \\ $$$$\int_{\mathrm{0}} ^{\infty} \:\:\frac{{du}}{\mathrm{1}+{u}^{\mathrm{2}} }\:=\frac{\pi}{\mathrm{2}} \\ $$$$\int_{\mathrm{0}} ^{\infty} \:\:\frac{{du}}{{u}^{\mathrm{2}} \:+\mathrm{3}{t}^{\mathrm{2}} }\:=_{{u}=\sqrt{\mathrm{3}}{t}\:{z}} \:\int_{\mathrm{0}} ^{\infty} \:\:\frac{\sqrt{\mathrm{3}}{t}\:{dz}}{\mathrm{3}{t}^{\mathrm{2}} \left(\mathrm{1}+{z}^{\mathrm{2}} \right)}\:=\frac{\mathrm{1}}{\:\sqrt{\mathrm{3}}{t}}×\frac{\pi}{\mathrm{2}}\:\Rightarrow \\ $$$${f}^{'} \left({t}\right)\:=\frac{\pi}{\mathrm{2}\left(\mathrm{3}{t}^{\mathrm{2}} −\mathrm{1}\right)}−\frac{\pi}{\mathrm{2}\sqrt{\mathrm{3}}{t}\left(\mathrm{3}{t}^{\mathrm{2}} −\mathrm{1}\right)}\:\Rightarrow \\ $$$${f}\left({t}\right)=\frac{\pi}{\mathrm{2}}\:\int\:\:\frac{{dt}}{\mathrm{3}{t}^{\mathrm{2}} −\mathrm{1}}−\frac{\pi}{\mathrm{2}\sqrt{\mathrm{3}}}\:\int\:\:\frac{{dt}}{{t}\left(\mathrm{3}{t}^{\mathrm{2}} −\mathrm{1}\right)}\:+{c}\:….{be}\:{continued}\:…. \\ $$