Menu Close

calculate-0-arctan-x-2-x-2-x-2-a-2-dx-with-a-gt-0-2-find-the-value-of-0-arctan-x-2-x-2-x-2-1-dx-




Question Number 77886 by mathmax by abdo last updated on 11/Jan/20
calculate ∫_0 ^∞   ((arctan(x^2  +x^(−2) ))/(x^2  +a^2 ))dx  with a>0  2) find the value of ∫_0 ^∞   ((arctan(x^2  +x^(−2) ))/(x^2  +1))dx
calculate0arctan(x2+x2)x2+a2dxwitha>02)findthevalueof0arctan(x2+x2)x2+1dx
Commented by mathmax by abdo last updated on 12/Jan/20
1) let A =∫_0 ^∞  ((arctan(x^2  +(1/x^2 )))/(x^2  +a^2 ))dx  the convergence of A is asdured  because ∣arctan(x^2  +x^(−2) )∣<(π/2)  for x≠0  we have  2A = ∫_(−∞) ^(+∞)  ((arctan(x^2 +x^(−2) ))/(x^2  +a^2 ))dx let W(z) =((arctan(z^2  +z^(−2) ))/(z^2  +a^2 ))  ∫_(−∞) ^(+∞)  W(z)dz =2iπRes(W,ia) =2iπ((∣arctan(−a^2 −(1/a^2 ))∣)/(2ia))  =(π/a)arctan(a^2  +(1/a^2 ))⇒A =(π/(2a))arctan(a^2  +(1/a^2 ))  2) a=1 ⇒∫_0 ^∞   ((arctan(x^2  +x^(−2) ))/(x^2  +1))dx =(π/2)arctan(2).
1)letA=0arctan(x2+1x2)x2+a2dxtheconvergenceofAisasduredbecausearctan(x2+x2)∣<π2forx0wehave2A=+arctan(x2+x2)x2+a2dxletW(z)=arctan(z2+z2)z2+a2+W(z)dz=2iπRes(W,ia)=2iπarctan(a21a2)2ia=πaarctan(a2+1a2)A=π2aarctan(a2+1a2)2)a=10arctan(x2+x2)x2+1dx=π2arctan(2).

Leave a Reply

Your email address will not be published. Required fields are marked *