Question Number 73337 by mathmax by abdo last updated on 10/Nov/19
$${calculate}\:\int_{\mathrm{0}} ^{\infty} \:\frac{{cos}\left({artan}\left(\mathrm{2}{x}\right)\right)}{\left(\mathrm{3}+{x}^{\mathrm{2}} \right)^{\mathrm{2}} }{dx} \\ $$
Commented by mathmax by abdo last updated on 11/Nov/19
$${let}\:{I}\:=\int_{\mathrm{0}} ^{\infty} \:\:\frac{{cos}\left({arctan}\left(\mathrm{2}{x}\right)\right)}{\left({x}^{\mathrm{2}} \:+\mathrm{3}\right)^{\mathrm{2}} }{dx}\:\Rightarrow{I}\:=_{{x}=\sqrt{\mathrm{3}}{t}} \:\:\:\int_{\mathrm{0}} ^{\infty} \:\frac{{cos}\left({arctan}\left(\mathrm{2}\sqrt{\mathrm{3}}{t}\right)\right)}{\mathrm{9}\left({t}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{2}} }\sqrt{\mathrm{3}}{dt} \\ $$$$\Rightarrow\mathrm{2}\:{I}\:=\frac{\sqrt{\mathrm{3}}}{\mathrm{9}}\int_{−\infty} ^{+\infty} \:\frac{{cos}\left({arctan}\left(\mathrm{2}\sqrt{\mathrm{3}}{t}\right)\right.}{\left({t}^{\mathrm{2}} \:+\mathrm{1}\right)^{\mathrm{2}} }{dt}\:\:=\frac{\sqrt{\mathrm{3}}}{\mathrm{9}}\:{Re}\left(\int_{−\infty} ^{+\infty} \:\frac{{e}^{{iarctan}\left(\mathrm{2}\sqrt{\mathrm{3}}{t}\right)} }{\left({t}^{\mathrm{2}} \:+\mathrm{1}\right)^{\mathrm{2}} }{dt}\right) \\ $$$${let}\:{W}\left({z}\right)=\frac{{e}^{{iarctan}\left(\mathrm{2}\sqrt{\mathrm{3}}{z}\right)} }{\left({z}^{\mathrm{2}} \:+\mathrm{1}\right)^{\mathrm{2}} }\:\Rightarrow{W}\left({z}\right)=\frac{{e}^{{iarctan}\left(\mathrm{2}\sqrt{\mathrm{3}}{z}\right)} }{\left({z}−{i}\right)^{\mathrm{2}} \left({z}+{i}\right)^{\mathrm{2}} }\:{and} \\ $$$$\int_{−\infty} ^{+\infty} \:{W}\left({z}\right){dz}\:=\mathrm{2}{i}\pi\:{Res}\left({W},{i}\right) \\ $$$${Res}\left({W},{i}\right)\:={lim}_{{z}\rightarrow{i}} \:\:\:\frac{\mathrm{1}}{\left(\mathrm{2}−\mathrm{1}\right)!}\left\{\left({z}−{i}\right)^{\mathrm{2}} {W}\left({z}\right)\right\}^{\left(\mathrm{1}\right)} \\ $$$$={lim}_{{z}\rightarrow{i}} \:\:\:\:\:\left\{\frac{{e}^{{iarctan}\left(\mathrm{2}\sqrt{\mathrm{3}}{z}\right)} }{\left({z}+{i}\right)^{\mathrm{2}} }\right\}^{\left(\mathrm{1}\right)} \\ $$$$={lim}_{{z}\rightarrow{i}} \:\:\:\:\frac{{i}\frac{\mathrm{2}\sqrt{\mathrm{3}}}{\mathrm{1}+\mathrm{12}{z}^{\mathrm{2}} }\left({z}+{i}\right)^{\mathrm{2}} {e}^{{iarctan}\left(\mathrm{2}\sqrt{\mathrm{3}}{z}\right)} −\mathrm{2}\left({z}+{i}\right){e}^{{iarctan}\left(\mathrm{2}\sqrt{\mathrm{3}}{z}\right)} }{\left({z}+{i}\right)^{\mathrm{4}} } \\ $$$$={lim}_{{z}\rightarrow{i}} \:\:\:\:\:\:\:\:\frac{\left\{\frac{\mathrm{2}{i}\sqrt{\mathrm{3}}\left({z}+{i}\right)}{\mathrm{1}+\mathrm{12}{z}^{\mathrm{2}} }−\mathrm{2}\right\}{e}^{{iarctan}\left(\mathrm{2}\sqrt{\mathrm{3}}{z}\right)} }{\left({z}+{i}\right)^{\mathrm{3}} } \\ $$$$=\frac{\left(\frac{−\mathrm{4}\sqrt{\mathrm{3}}}{−\mathrm{11}}−\mathrm{2}\right\}{e}^{{i}\:{arctan}\left(\mathrm{2}\sqrt{\mathrm{3}}{i}\right)} }{−\mathrm{8}{i}}\:=\frac{\left(\mathrm{4}\sqrt{\mathrm{3}}+\mathrm{22}\right){e}^{{i}\:{arctan}\left(\mathrm{2}\sqrt{\mathrm{3}}{i}\right)} }{\mathrm{88}{i}}\:\Rightarrow \\ $$$$\int_{−\infty} ^{+\infty} \:{W}\left({z}\right){dz}\:=\mathrm{2}{i}\pi×\frac{\left(\mathrm{4}\sqrt{\mathrm{3}}+\mathrm{22}\right){e}^{{i}\:{arctan}\left(\mathrm{2}\sqrt{\mathrm{3}}{i}\right)} }{\mathrm{88}{i}} \\ $$$$=\frac{\pi}{\mathrm{44}}\left\{\:{cos}\left({arctan}\left(\mathrm{2}\sqrt{\mathrm{3}}{i}\right)+{isin}\left({arctan}\left(\mathrm{2}\sqrt{\mathrm{3}}{i}\right)\right)\right\}\:\Rightarrow\right. \\ $$$${I}\:=\frac{\sqrt{\mathrm{3}}}{\mathrm{18}}×\frac{\pi}{\mathrm{44}}\:{cos}\left({arctan}\left(\mathrm{2}\sqrt{\mathrm{3}}{i}\right)\right. \\ $$$$ \\ $$
Commented by mathmax by abdo last updated on 11/Nov/19
$${forgive}\:\:{we}\:{have}\:\int_{−\infty} ^{+\infty} {W}\left({z}\right){dz}\:=\frac{\pi}{\mathrm{44}}\left(\mathrm{4}\sqrt{\mathrm{3}}+\mathrm{22}\right)\:{e}^{{iarctan}\left(\mathrm{2}\sqrt{\mathrm{3}}{i}\right)} \:\Rightarrow \\ $$$${I}\:=\frac{\sqrt{\mathrm{3}}}{\mathrm{18}}×\frac{\pi}{\mathrm{22}}\left(\mathrm{2}\sqrt{\mathrm{3}}+\mathrm{11}\right){cos}\left({arctan}\left(\mathrm{2}\sqrt{\mathrm{3}}{i}\right)\right. \\ $$
Commented by mathmax by abdo last updated on 11/Nov/19
$${we}\:{have}\:{arctan}\left({z}\right)=\frac{\mathrm{1}}{\mathrm{2}{i}}{ln}\left(\frac{\mathrm{1}+{iz}}{\mathrm{1}−{iz}}\right)\:\Rightarrow{arctan}\left(\mathrm{2}\sqrt{\mathrm{3}}{i}\right) \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}{i}}{ln}\left(\frac{\mathrm{1}−\mathrm{2}\sqrt{\mathrm{3}}}{\mathrm{1}+\mathrm{2}\sqrt{\mathrm{3}}}\right)\:=\frac{\mathrm{1}}{\mathrm{2}{i}}{ln}\left(−\frac{\mathrm{2}\sqrt{\mathrm{3}}−\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{3}}+\mathrm{1}}\right) \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}{i}}{ln}\left(−\mathrm{1}\right)+\frac{\mathrm{1}}{\mathrm{2}{i}}{ln}\left(\frac{\mathrm{2}\sqrt{\mathrm{3}}−\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{3}}+\mathrm{1}}\right)\:=\frac{\mathrm{1}}{\mathrm{2}{i}}\left({i}\pi\right)\:+\frac{\mathrm{1}}{\mathrm{2}{i}}{ln}\left(\frac{\mathrm{2}\sqrt{\mathrm{3}}−\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{3}}+\mathrm{1}}\right) \\ $$$$=\frac{\pi}{\mathrm{2}}\:+\frac{\mathrm{1}}{\mathrm{2}{i}}{ln}\left(\frac{\mathrm{2}\sqrt{\mathrm{3}}−\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{3}}+\mathrm{1}}\right)\:\Rightarrow{cos}\left({arctan}\left(\mathrm{2}\sqrt{\mathrm{3}}{i}\right)\right)=−{sin}\left(−\frac{{i}}{\mathrm{2}}{ln}\left(\frac{\mathrm{2}\sqrt{\mathrm{3}}−\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{3}}+\mathrm{1}}\right)\right. \\ $$$$={sin}\left(\frac{{i}}{\mathrm{2}}{ln}\left(\frac{\mathrm{2}\sqrt{\mathrm{3}}−\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{3}}+\mathrm{1}}\right)\right)\:={sh}\left(−\frac{\mathrm{1}}{\mathrm{2}}{ln}\left(\frac{\mathrm{2}\sqrt{\mathrm{3}}−\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{3}}+\mathrm{1}}\right)\right) \\ $$$$=\frac{{e}^{−\frac{\mathrm{1}}{\mathrm{2}}{ln}\left(\frac{\mathrm{2}\sqrt{\mathrm{3}}−\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{3}}+\mathrm{1}}\right)} −{e}^{\frac{\mathrm{1}}{\mathrm{2}}{ln}\left(\frac{\mathrm{2}\sqrt{\mathrm{3}}−\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{3}}+\mathrm{1}}\right)} }{\mathrm{2}}\:=−\frac{\mathrm{1}}{\mathrm{2}}\left\{\sqrt{\frac{\mathrm{2}\sqrt{\mathrm{3}}−\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{3}}+\mathrm{1}}}−\frac{\mathrm{1}}{\:\sqrt{\frac{\mathrm{2}\sqrt{\mathrm{3}}−\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{3}}+\mathrm{1}}}}\right\}\:\Rightarrow \\ $$$${I}=\frac{\pi\sqrt{\mathrm{3}}}{\mathrm{18}×\mathrm{22}}\left(\mathrm{2}\sqrt{\mathrm{3}}+\mathrm{11}\right)\left\{\left(\frac{\mathrm{2}\sqrt{\mathrm{3}}−\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{3}}+\mathrm{1}}\right)^{−\frac{\mathrm{1}}{\mathrm{2}}} −\left(\frac{\mathrm{2}\sqrt{\mathrm{3}}−\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{3}}+\mathrm{1}}\right)^{\frac{\mathrm{1}}{\mathrm{2}}} \right\} \\ $$