Menu Close

calculate-0-cos-sinx-sin-cosx-x-2-1-2-dx-




Question Number 136858 by mathmax by abdo last updated on 27/Mar/21
calculate ∫_0 ^∞  ((cos(sinx)−sin(cosx))/((x^2  +1)^2 ))dx
calculate0cos(sinx)sin(cosx)(x2+1)2dx
Answered by mathmax by abdo last updated on 27/Mar/21
Φ=∫_0 ^∞  ((cos(sinx))/((x^2  +1)^2 ))dx−∫_0 ^∞  ((sin(cosx))/((x^2  +1)^2 ))dx =I−J  2I =∫_(−∞) ^(+∞)  ((cos(sinx))/((x^2  +1)^2 ))dx =Re(∫_(−∞) ^(+∞)  (e^(isinx) /((x^2  +1)^2 ))dx) let  W(z)=(e^(isinz) /((z^2  +1)^2 )) ⇒w(z)=(e^(isinz) /((z−i)^2 (z+i)^2 ))  ∫_R w(z)dz =2iπRes(w,i)  Res(w,i) =lim_(z→i)   (1/((2−1)!)){(z−i)^2 w(z)}^((1))   =lim_(z→i)   { (e^(isinz) /((z+i)^2 ))}^((1))  =lim_(z→i)   ((icosz e^(isinz) (z+i)^2 −2(z+i)e^(isinz) )/((z+i)^4 ))  =lim_(z→i)    (((icosz(z+i)−2)e^(isinz) )/((z+i)^3 ))=(((−2cosi−2)e^(isini) )/((2i)^3 ))  =(((−2cosi−2)e^(isini) )/(−8i)) =(((1+cos(i))e^(isin(i)) )/(4i))  we have cosz =((e^(iz)  +e^(−iz) )/2) ⇒cos(i)=((e^(−1)  +e)/2) =ch(1)  sin(z) =((e^(iz) −e^(−iz) )/(2i)) ⇒sin(i)=((e^(−1) −e)/(2i)) ⇒isin(i)=((e^(−1) −e)/2)=−sh(1) ⇒  Res(w,i)=(((1+ch(1))e^(−sh(1)) )/(4i)) ⇒∫_R w(z)dz=2iπ (((1+ch(1))e^(−sh(1)) )/(4i))  =(π/2)(1+ch(1))sh(1) ⇒I=(π/4)(1+ch(1))e^(−sh(1))   2J =∫_(−∞) ^(+∞)   ((sin(cosx))/((x^2  +1)^2 ))dx =Im(∫_(−∞) ^(+∞)  (e^(icosx) /((x^2  +1)^2 ))dx) let  ϕ(z)=(e^(icosz) /((z^2  +1)^2 )) ⇒ϕ(z)=(e^(icosz) /((z−i)^2 (z+i)^2 ))  ∫_R ϕ(z)dz =2iπ Res(ϕ,i)  Res(ϕ,i)=lim_(z→i)   (1/((2−1)!)){(z−i)^2 ϕ(z)}^((1))   =lim_(z→i)    {(e^(icosz) /((z+i)^2 ))}^((1))  =lim_(z→i)   ((−isinze^(icosz) (z+i)^2 −2(z+i) e^(icosz) )/((z+i)^4 ))  =lim_(z→i)    (((−isinz(z+i)−2)e^(icosz) )/((z+i)^3 )) =(((2sini−2)e^(icosi) )/(−8i))  =(((1−sini)e^(icosi) )/(4i)) ⇒∫_R ϕ(z)dz =2iπ(((1−sin(i))e^(icosi) )/(4i))  =(π/2)(1−sin(i)e^(icos(i))   cos(i)=ch(1) ⇒icos(i)=ich(1)⇒e^(icos(i))  =e^(ich(1) )  =cos(ch1)+isin(ch(1))  sin(i)=((e^(i(i)) −e^(−i(i)) )/(2i)) =((e^(−i) −e)/(2i)) =−((e−e^(−1) )/(2i))=−sh(1) rest to extract  Im( ∫  ϕ)....
Φ=0cos(sinx)(x2+1)2dx0sin(cosx)(x2+1)2dx=IJ2I=+cos(sinx)(x2+1)2dx=Re(+eisinx(x2+1)2dx)letW(z)=eisinz(z2+1)2w(z)=eisinz(zi)2(z+i)2Rw(z)dz=2iπRes(w,i)Res(w,i)=limzi1(21)!{(zi)2w(z)}(1)=limzi{eisinz(z+i)2}(1)=limziicoszeisinz(z+i)22(z+i)eisinz(z+i)4=limzi(icosz(z+i)2)eisinz(z+i)3=(2cosi2)eisini(2i)3=(2cosi2)eisini8i=(1+cos(i))eisin(i)4iwehavecosz=eiz+eiz2cos(i)=e1+e2=ch(1)sin(z)=eizeiz2isin(i)=e1e2iisin(i)=e1e2=sh(1)Res(w,i)=(1+ch(1))esh(1)4iRw(z)dz=2iπ(1+ch(1))esh(1)4i=π2(1+ch(1))sh(1)I=π4(1+ch(1))esh(1)2J=+sin(cosx)(x2+1)2dx=Im(+eicosx(x2+1)2dx)letφ(z)=eicosz(z2+1)2φ(z)=eicosz(zi)2(z+i)2Rφ(z)dz=2iπRes(φ,i)Res(φ,i)=limzi1(21)!{(zi)2φ(z)}(1)=limzi{eicosz(z+i)2}(1)=limziisinzeicosz(z+i)22(z+i)eicosz(z+i)4=limzi(isinz(z+i)2)eicosz(z+i)3=(2sini2)eicosi8i=(1sini)eicosi4iRφ(z)dz=2iπ(1sin(i))eicosi4i=π2(1sin(i)eicos(i)cos(i)=ch(1)icos(i)=ich(1)eicos(i)=eich(1)=cos(ch1)+isin(ch(1))sin(i)=ei(i)ei(i)2i=eie2i=ee12i=sh(1)resttoextractIm(φ).

Leave a Reply

Your email address will not be published. Required fields are marked *