calculate-0-cos-sinx-sin-cosx-x-2-1-2-dx- Tinku Tara June 3, 2023 Integration 0 Comments FacebookTweetPin Question Number 136858 by mathmax by abdo last updated on 27/Mar/21 calculate∫0∞cos(sinx)−sin(cosx)(x2+1)2dx Answered by mathmax by abdo last updated on 27/Mar/21 Φ=∫0∞cos(sinx)(x2+1)2dx−∫0∞sin(cosx)(x2+1)2dx=I−J2I=∫−∞+∞cos(sinx)(x2+1)2dx=Re(∫−∞+∞eisinx(x2+1)2dx)letW(z)=eisinz(z2+1)2⇒w(z)=eisinz(z−i)2(z+i)2∫Rw(z)dz=2iπRes(w,i)Res(w,i)=limz→i1(2−1)!{(z−i)2w(z)}(1)=limz→i{eisinz(z+i)2}(1)=limz→iicoszeisinz(z+i)2−2(z+i)eisinz(z+i)4=limz→i(icosz(z+i)−2)eisinz(z+i)3=(−2cosi−2)eisini(2i)3=(−2cosi−2)eisini−8i=(1+cos(i))eisin(i)4iwehavecosz=eiz+e−iz2⇒cos(i)=e−1+e2=ch(1)sin(z)=eiz−e−iz2i⇒sin(i)=e−1−e2i⇒isin(i)=e−1−e2=−sh(1)⇒Res(w,i)=(1+ch(1))e−sh(1)4i⇒∫Rw(z)dz=2iπ(1+ch(1))e−sh(1)4i=π2(1+ch(1))sh(1)⇒I=π4(1+ch(1))e−sh(1)2J=∫−∞+∞sin(cosx)(x2+1)2dx=Im(∫−∞+∞eicosx(x2+1)2dx)letφ(z)=eicosz(z2+1)2⇒φ(z)=eicosz(z−i)2(z+i)2∫Rφ(z)dz=2iπRes(φ,i)Res(φ,i)=limz→i1(2−1)!{(z−i)2φ(z)}(1)=limz→i{eicosz(z+i)2}(1)=limz→i−isinzeicosz(z+i)2−2(z+i)eicosz(z+i)4=limz→i(−isinz(z+i)−2)eicosz(z+i)3=(2sini−2)eicosi−8i=(1−sini)eicosi4i⇒∫Rφ(z)dz=2iπ(1−sin(i))eicosi4i=π2(1−sin(i)eicos(i)cos(i)=ch(1)⇒icos(i)=ich(1)⇒eicos(i)=eich(1)=cos(ch1)+isin(ch(1))sin(i)=ei(i)−e−i(i)2i=e−i−e2i=−e−e−12i=−sh(1)resttoextractIm(∫φ)…. Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Why-x-x-2x-Explain-by-properties-laws-Next Next post: Solve-simultaneously-2x-y-z-8-i-x-2-y-2-2z-2-14-ii-3x-3-4y-3-z-3-195-iii-Please-help-though-equation-Thanks-for-your-help- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.