Menu Close

calculate-0-cos-sinx-sin-cosx-x-2-8-dx-




Question Number 137693 by Mathspace last updated on 05/Apr/21
calculate ∫_0 ^∞  ((cos(sinx)−sin(cosx))/(x^2  +8))dx
calculate0cos(sinx)sin(cosx)x2+8dx
Answered by mathmax by abdo last updated on 07/Apr/21
∫_0 ^∞  ((cos(sinx)−sin(cosx))/(x^2  +8))dx =∫_0 ^∞  ((cos(sinx))/(x^2  +8)) dx−∫_0 ^∞  ((sin(cosx))/(x^2  +8))dx  =I−J  I =_(x=2(√2)t)   ∫_0 ^∞   ((cos(sin(2(√2)t))/(8(t^2  +1)))(2(√2))t dt  =((√2)/4)∫_0 ^∞  ((cos(sin(2(√2)t)))/(t^2  +1))dt =((√2)/8)∫_(−∞) ^(+∞)  ((cos(sin(2(√2)t))/(t^2  +1))dt  =((√2)/8)Re(∫_(−∞) ^(+∞)  (e^(isin(2(√2))t) /(t^2  +1))dt)  let ϕ(z)=(e^(isin(2(√2)z)) /(z^2  +1))  ∫_R ϕ(z)dz =2iπRes(ϕ,i) =2iπ.(e^(isin(2i(√2))) /(2i)) =π e^(isin(i2(√2)))   we know sinz =((e^(iz) −e^(−iz) )/(2i)) ⇒sin(i2(√2)) =((e^(i(2i(√2))) −e^(−i(2i(√2))) )/(2i))  =((e^(−2(√2)) −e^(2(√2)) )/(2i)) =−(i/2)(e^(−2(√2))  −e^(2(√2)))  =ish(2(√2)) ⇒  ∫_R ϕ(z)dz =π e^(i(ish(2(√2)))  =π e^(−sh(2(√2)))   ⇒I=((π(√2))/8) e^(−sh(2(√2)))   the same changement give J =((√2)/8)∫_(−∞) ^(+∞)  ((sin(cos(2(√2)t)))/(t^2  +1))dt  =((√2)/8)Im(∫_(−∞) ^(+∞)  (e^(icos(2(√2)t)) /(t^2  +1))dt) let Φ(z)=(e^(icos(2(√2)z)) /(z^(2 )  +1))dt  ∫_R Φ(z)dz =2iπ Res(Φ,i) =2iπ.(e^(icos(2(√2)i)) /(2i)) =πe^(ich(2(√2)))   =π{cos(ch(2(√2))+isin(ch(2(√2))} ⇒  J =((π(√2))/8)sin(ch(2(√2))) ⇒  ∫_0 ^∞  ((cos(sinx)−sin(cosx))/(x^2  +8))dx =((π(√2))/8)(e^(−sh(2(√2))) −sin(ch(2(√2)))
0cos(sinx)sin(cosx)x2+8dx=0cos(sinx)x2+8dx0sin(cosx)x2+8dx=IJI=x=22t0cos(sin(22t)8(t2+1)(22)tdt=240cos(sin(22t))t2+1dt=28+cos(sin(22t)t2+1dt=28Re(+eisin(22)tt2+1dt)letφ(z)=eisin(22z)z2+1Rφ(z)dz=2iπRes(φ,i)=2iπ.eisin(2i2)2i=πeisin(i22)weknowsinz=eizeiz2isin(i22)=ei(2i2)ei(2i2)2i=e22e222i=i2(e22e22)=ish(22)Rφ(z)dz=πei(ish(22)=πesh(22)I=π28esh(22)thesamechangementgiveJ=28+sin(cos(22t))t2+1dt=28Im(+eicos(22t)t2+1dt)letΦ(z)=eicos(22z)z2+1dtRΦ(z)dz=2iπRes(Φ,i)=2iπ.eicos(22i)2i=πeich(22)=π{cos(ch(22)+isin(ch(22)}J=π28sin(ch(22))0cos(sinx)sin(cosx)x2+8dx=π28(esh(22)sin(ch(22))

Leave a Reply

Your email address will not be published. Required fields are marked *