Menu Close

calculate-0-cos-x-2-x-4-x-2-1-dx-




Question Number 76194 by abdomathmax last updated on 25/Dec/19
calculate ∫_0 ^∞     ((cos(x^2 ))/(x^4 −x^2  +1))dx
calculate0cos(x2)x4x2+1dx
Commented by abdomathmax last updated on 25/Dec/19
let A =∫_0 ^∞   ((cos(x^2 ))/(x^4 −x^2  +1))dx ⇒A =(1/2) ∫_(−∞) ^(+∞)  ((cos(x^2 ))/(x^4 −x^2  +1))dx  ⇒2A =Re (∫_(−∞) ^(+∞)  (e^(ix^2 ) /(x^4 −x^2 +1))dx) let  W(z) =(e^(iz^2 ) /(z^4 −z^2  +1))  poles of W?  z^4 −z^2  +1 =0 ⇒t^2 −t +1 =0  with t=z^2   Δ=1−4=−3 ⇒t_1 =((1+(√3))/2) and t_2 =((1−(√3))/2)  t_1 =e^((iπ)/3)   and t_2 =e^((iπ)/3)  ⇒W(z) =(e^(iz^2 ) /((z^2 −e^((iπ)/3) )(z^2 −e^(−((iπ)/3)) )))  =(e^(iz^2 ) /((z−e^((iπ)/6) )(z+e^((iπ)/6) )(z−e^(−((iπ)/6)) )(z+e^(−((iπ)/6)) )))  ∫_(−∞) ^(+∞)   W(z)dz =2iπ { Res(W,e^((iπ)/6) ) +Res(W,−e^(−((iπ)/6)) )}  we have Res(W, e^((iπ)/6) ) =(e^(i(((iπ)/3))) /(2e^((iπ)/6) (e^((iπ)/3) −e^(−((iπ)/3)) )))  =((e^(−(π/3))  e^(−((iπ)/6)) )/(4 sin((π/3)))) =((e^(−(π/3))  e^(−((iπ)/6)) )/(4((√3)/2))) =(e^(−(π/3)) /(2(√3))) e^(−((iπ)/6))   Res(W,−e^(−((iπ)/6)) ) =(e^(i(−((iπ)/3))) /((−2 e^(−((iπ)/6)) )( e^(−((iπ)/3)) −e^((iπ)/3) )))  =(e^(π/3) /(4 sin((π/3))))e^((iπ)/6)  =((e^(π/3)  e^((iπ)/3) )/(4 ((√3)/2))) =((e^(π/3)  e^((iπ)/6) )/(2(√3))) ⇒  ∫_(−∞) ^(+∞)  W(z)dz =((2iπ)/(2(√3))){ e^(−(π/3))  e^(−((iπ)/6))  +e^(π/3)  e^((iπ)/6) }  =((iπ)/( (√3))){ e^(−(π/3)) ( ((√3)/2)−(i/2))+e^(π/3) (((√3)/2)+(i/2))}  =(π/( (√3))){i((√3)/2) e^(−(π/3))  +(1/2)e^(−(π/3))  +i((√3)/2)e^(π/3) −(1/2)e^(π/3) } ⇒  2A =−(π/(2(√3)))( e^(π/3)  −e^(−(π/3)) ) ⇒  A =−(π/(4(√3)))( e^(π/3)  −e^(−(π/3)) )=(π/(4(√3)))( e^(−(π/3)) −e^(π/3) )  ×  ×
letA=0cos(x2)x4x2+1dxA=12+cos(x2)x4x2+1dx2A=Re(+eix2x4x2+1dx)letW(z)=eiz2z4z2+1polesofW?z4z2+1=0t2t+1=0witht=z2Δ=14=3t1=1+32andt2=132t1=eiπ3andt2=eiπ3W(z)=eiz2(z2eiπ3)(z2eiπ3)=eiz2(zeiπ6)(z+eiπ6)(zeiπ6)(z+eiπ6)+W(z)dz=2iπ{Res(W,eiπ6)+Res(W,eiπ6)}wehaveRes(W,eiπ6)=ei(iπ3)2eiπ6(eiπ3eiπ3)=eπ3eiπ64sin(π3)=eπ3eiπ6432=eπ323eiπ6Res(W,eiπ6)=ei(iπ3)(2eiπ6)(eiπ3eiπ3)=eπ34sin(π3)eiπ6=eπ3eiπ3432=eπ3eiπ623+W(z)dz=2iπ23{eπ3eiπ6+eπ3eiπ6}=iπ3{eπ3(32i2)+eπ3(32+i2)}=π3{i32eπ3+12eπ3+i32eπ312eπ3}2A=π23(eπ3eπ3)A=π43(eπ3eπ3)=π43(eπ3eπ3)××

Leave a Reply

Your email address will not be published. Required fields are marked *