Menu Close

calculate-0-dx-x-1-2-x-2-4-




Question Number 71665 by mathmax by abdo last updated on 18/Oct/19
calculate ∫_0 ^∞   (dx/((x+1)^2 ((√(x^2 +4)))))
calculate0dx(x+1)2(x2+4)
Answered by MJS last updated on 19/Oct/19
∫(dx/((x+1)^2 (√(x^2 +4))))=       [t=arctan (x/2) → dx=((x^2 +4)/2)dt]  =∫((cos t)/((cos t +2sin t)^2 ))dt=       [u=tan (t/2) → dt=((2du)/(u^2 +1))]  =−2∫((u^2 −1)/((u^2 −4u−1)^2 ))  now I′d use Ostrogradski′s Method once again  ∫(P/Q)=(P_1 /Q_1 )+∫(P_2 /Q_2 )  Q_1 =gcd (Q, Q′); Q_2 =(Q/Q_1 )  degree (P_i ) <degree (Q_i )  we find P_i  by comparing the factors of  (P/Q)=((P_1 /Q_1 ))′+(P_2 /Q_2 )  Q=(u^2 −4u−1)^2   Q′=4(u−2)(u^2 −4u−1)  Q_1 =Q_2 =u^2 −4u−1  P=u^2 −1  P_1 =−(4/5)u−(2/5)  P_2 =(1/5)  −2∫((u^2 −1)/((u^2 −4u−1)^2 ))=  =((4(2u+1))/(5(u^2 −4u−1)))−(2/5)∫(du/(u^2 −4u−1))=  =((4(2u+1))/(5(u^2 −4u−1)))−((√5)/(25))ln ((u−2−(√5))/(u−2+(√5))) =  =...=−((√(x^2 +4))/(5(x+1)))+((√5)/(25))ln ∣((x−4−(√(5(x^2 +4))))/(x+1))∣ +C    ∫_0 ^∞ (dx/((x+1)^2 (√(x^2 +4))))=(1/5)+((√5)/(25))ln (((7−3(√5))/2))
dx(x+1)2x2+4=[t=arctanx2dx=x2+42dt]=cost(cost+2sint)2dt=[u=tant2dt=2duu2+1]=2u21(u24u1)2nowIduseOstrogradskisMethodonceagainPQ=P1Q1+P2Q2Q1=gcd(Q,Q);Q2=QQ1degree(Pi)<degree(Qi)wefindPibycomparingthefactorsofPQ=(P1Q1)+P2Q2Q=(u24u1)2Q=4(u2)(u24u1)Q1=Q2=u24u1P=u21P1=45u25P2=152u21(u24u1)2==4(2u+1)5(u24u1)25duu24u1==4(2u+1)5(u24u1)525lnu25u2+5===x2+45(x+1)+525lnx45(x2+4)x+1+C0dx(x+1)2x2+4=15+525ln(7352)
Commented by Abdo msup. last updated on 19/Oct/19
thank you sir.
thankyousir.

Leave a Reply

Your email address will not be published. Required fields are marked *