Question Number 66464 by mathmax by abdo last updated on 15/Aug/19
$${calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\:\:\frac{{dx}}{\left({x}^{\mathrm{2}} +\mathrm{3}\right)\left({x}^{\mathrm{2}} +\mathrm{8}\right)^{\mathrm{2}} } \\ $$
Commented by mathmax by abdo last updated on 16/Aug/19
$${let}\:{I}\:=\int_{\mathrm{0}} ^{\infty} \:\:\frac{{dx}}{\left({x}^{\mathrm{2}} \:+\mathrm{3}\right)\left({x}^{\mathrm{2}} \:+\mathrm{8}\right)^{\mathrm{2}} }\:\Rightarrow\mathrm{2}{I}\:=\int_{−\infty} ^{+\infty} \:\frac{{dx}}{\left({x}^{\mathrm{2}} \:+\mathrm{3}\right)\left({x}^{\mathrm{2}} +\mathrm{8}\right)^{\mathrm{2}} } \\ $$$${let}\:\varphi\left({z}\right)=\frac{\mathrm{1}}{\left({z}^{\mathrm{2}} \:+\mathrm{3}\right)\left({z}^{\mathrm{2}} \:+\mathrm{8}\right)^{\mathrm{2}} }\:\:{poles}\:{of}\:\varphi? \\ $$$$\varphi\left({z}\right)\:=\frac{\mathrm{1}}{\left({z}−{i}\sqrt{\mathrm{3}}\right)\left({z}+{i}\sqrt{\mathrm{3}}\right)\left({z}−{i}\mathrm{2}\sqrt{\mathrm{2}}\right)^{\mathrm{2}} \left({z}+{i}\mathrm{2}\sqrt{\mathrm{2}}\right)^{\mathrm{2}} }\:\:{the}\:{poles}\:{of}\:\varphi\:{are} \\ $$$$\overset{−} {+}{i}\sqrt{\mathrm{3}}{and}\:\overset{−} {+}\mathrm{2}{i}\sqrt{\mathrm{2}}\:\:\:{residus}\:{theorem}\:{give} \\ $$$$\int_{−\infty} ^{+\infty} \:\varphi\left({z}\right){dz}\:=\mathrm{2}{i}\pi\left\{{Res}\left(\varphi,{i}\sqrt{\mathrm{3}}\right)+{Res}\left(\varphi,\mathrm{2}{i}\sqrt{\mathrm{2}}\right)\right\} \\ $$$${Res}\left(\varphi,{i}\sqrt{\mathrm{3}}\right)\:={lim}_{{z}\rightarrow{i}\sqrt{\mathrm{3}}} \:\:\:\left({z}−{i}\sqrt{\mathrm{3}}\right)\varphi\left({z}\right)\:=\frac{\mathrm{1}}{\mathrm{2}{i}\sqrt{\mathrm{3}}\left(−\mathrm{3}+\mathrm{8}\right)^{\mathrm{2}} }\:=\frac{\mathrm{1}}{\mathrm{50}{i}\sqrt{\mathrm{3}}} \\ $$$${Res}\left(\varphi,\mathrm{2}{i}\sqrt{\mathrm{2}}\right)\:={lim}_{{z}\rightarrow\mathrm{2}{i}\sqrt{\mathrm{2}}} \:\:\:\:\frac{\mathrm{1}}{\left(\mathrm{2}−\mathrm{1}\right)!}\left\{\left({z}−\mathrm{2}{i}\sqrt{\mathrm{2}}\right)^{\mathrm{2}} \varphi\left({z}\right)\right\}^{\left(\mathrm{1}\right)} \\ $$$$={lim}_{{z}\rightarrow\mathrm{2}{i}\sqrt{\mathrm{2}}} \:\:\:\:\:\left\{\frac{\mathrm{1}}{\left({z}^{\mathrm{2}} \:+\mathrm{3}\right)\left({z}+\mathrm{2}{i}\sqrt{\mathrm{2}}\right)^{\mathrm{2}} }\right\}^{\left(\mathrm{1}\right)} \\ $$$$={lim}_{{z}\rightarrow\mathrm{2}{i}\sqrt{\mathrm{2}}} \:\:\:−\frac{\mathrm{2}{z}\left({z}+\mathrm{2}{i}\sqrt{\mathrm{2}}\right)^{\mathrm{2}} \:+\mathrm{2}\left({z}+\mathrm{2}{i}\sqrt{\mathrm{2}}\right)\left({z}^{\mathrm{2}} \:+\mathrm{3}\right)}{\left({z}^{\mathrm{2}} +\mathrm{3}\right)^{\mathrm{2}} \left({z}+\mathrm{2}{i}\sqrt{\mathrm{2}}\right)^{\mathrm{2}} } \\ $$$$={lim}_{{z}\rightarrow\mathrm{2}{i}\sqrt{\mathrm{2}}} \:\:\:\:−\frac{\mathrm{2}{z}\left({z}+\mathrm{2}{i}\sqrt{\mathrm{2}}\right)+\mathrm{2}\left({z}^{\mathrm{2}} \:+\mathrm{3}\right)}{\left({z}^{\mathrm{2}} \:+\mathrm{3}\right)^{\mathrm{2}} \left({z}+\mathrm{2}{i}\sqrt{\mathrm{2}}\right)} \\ $$$$=−\frac{\mathrm{4}{i}\sqrt{\mathrm{2}}\left(\mathrm{4}{i}\sqrt{\mathrm{2}}\right)+\mathrm{2}\left(−\mathrm{8}+\mathrm{3}\right)}{\left(−\mathrm{8}+\mathrm{3}\right)^{\mathrm{2}} \left(\mathrm{4}{i}\sqrt{\mathrm{2}}\right)}\:=−\frac{−\mathrm{32}−\mathrm{10}}{\mathrm{100}{i}\sqrt{\mathrm{2}}}\:=\frac{\mathrm{42}}{\mathrm{100}{i}\sqrt{\mathrm{2}}}\:=\frac{\mathrm{21}}{\mathrm{50}{i}\sqrt{\mathrm{2}}} \\ $$$$\int_{−\infty} ^{+\infty} \varphi\left({z}\right){dz}\:=\mathrm{2}{i}\pi\left\{\frac{\mathrm{1}}{\mathrm{50}{i}\sqrt{\mathrm{3}}}+\frac{\mathrm{21}}{\mathrm{50}{i}\sqrt{\mathrm{2}}}\right\}\:=\frac{\pi}{\mathrm{25}\sqrt{\mathrm{3}}}\:+\frac{\mathrm{21}\pi}{\mathrm{25}\sqrt{\mathrm{2}}}\:=\mathrm{2}{I} \\ $$