Question Number 67799 by mathmax by abdo last updated on 31/Aug/19

Commented by MJS last updated on 31/Aug/19

Commented by mathmax by abdo last updated on 31/Aug/19

Commented by mathmax by abdo last updated on 01/Sep/19

Answered by mind is power last updated on 01/Sep/19
![let γ_r ={z∈C such that∣z∣≤r ∣im(z)>0} we have ∫_0 ^(+∞) (dx/((x^2 −e^(ia) )(x^2 −e^(ib) )))=(1/2)∫_(−∞) ^(+∞) (dx/((x^2 −e^(ia) )(x^2 −e^(ib) ))) let f(z)=(1/((z^2 −e^(ia) )(z^2 −e^(ib) ))) f(z)=(1/((r^2 e^(2i∅) −e^(ia) )(r^2 e^(2i∅) −e^(ib) ))) over γ_r ∣f(z)∣≤(1/(∣r^2 −1∣^2 )) we used ∣z+z′∣≥∣∣z∣−∣z′∣∣ twice ⇒∫_(γr) f(z)dz≤∫_γ_r (1/((r^2 −1)^2 ))dz=((πr)/((r^2 −1)^2 ))→0=as r→+∞ residu theorem poles of f inside γ_r ∪]−∞.+∞[ ar e^(i(a/2)) .e^((ib)/2) lim (z−e^(i(a/2)) ).f(z)=(1/(2e^(i(a/2)) .(e^(ia) −e^(ib) ))) lim(z−e^(i(b/2)) )f(z)=(1/(2e^(i(b/2)) (e^(ib) −e^(ia) ))) ∫_(−∞) ^(+∞) f(z)dz=2iπΣ_(residu) f(z)=2iπ((e^(−i(b/2)) /((e^(ib) −e^(ia) )2))−(e^(−((ia)/2)) /(2(e^(ib) −e^(ia) )))) =iπ(((e^(−((ib)/2)) −e^((−ia)/2) )/((e^(i((a+b)/2)) (e^(i((b−a)/2)) −e^(i−((b−a)/2)) ))))=iπ((e^(−ib−i(a/2)) −e^(−ia−i(b/2)) )/(2isin(((a−b)/2))))](https://www.tinkutara.com/question/Q67829.png)
Commented by mathmax by abdo last updated on 01/Sep/19

Commented by mind is power last updated on 01/Sep/19
