Menu Close

calculate-0-dx-x-2-e-ia-x-2-e-ib-with-a-gt-0-andb-gt-0-




Question Number 67799 by mathmax by abdo last updated on 31/Aug/19
calculate ∫_0 ^∞   (dx/((x^2  −e^(ia) )(x^2 −e^(ib) )))  with a>0 andb>0
calculate0dx(x2eia)(x2eib)witha>0andb>0
Commented by MJS last updated on 31/Aug/19
can we calculate ∫_0 ^∞ (dx/((x^2 −α)(x^2 −β))) and then  insert α=e^(ia) ; β=e^(ib) ?
canwecalculate0dx(x2α)(x2β)andtheninsertα=eia;β=eib?
Commented by mathmax by abdo last updated on 31/Aug/19
yes sir but you must determine ∫ (dx/(x^2 −z))  with z from C.
yessirbutyoumustdeterminedxx2zwithzfromC.
Commented by mathmax by abdo last updated on 01/Sep/19
let I =∫_0 ^∞    (dx/((x^2 −e^(ia) )(x^2 −e^(ib) ))) ⇒2I =∫_(−∞) ^(+∞)   (dx/((x^2 −e^(ia) )(x^2 −e^(ib) )))  let ϕ(z) =(1/((z^2 −e^(ia) )(z^2 −e^(ib) ))) ⇒ϕ(z) =(1/((z−e^((ia)/2) )(z+e^((ia)/2) )(z−e^((ib)/2) )(z+e^((ib)/2) )))  the poles of ϕ are +^− e^((ia)/2)  and +^− e^((ib)/(2 ))    residus theorem give  ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ{ Res(ϕ,e^((ia)/2) )+Res(ϕ,e^((ib)/2) )}  Res(ϕ,e^((ia)/2) )=lim_(z→e^((ia)/2) )   (z−e^((ia)/2) )ϕ(z) =(1/(2e^((ia)/2) (e^(ia) −e^(ib) ))) =(e^(−i(a/2)) /(2(e^(ia) −e^(ib) )))  Res(ϕ,e^((ib)/2) ) =lim_(z→e^((ib)/2) )   (z−e^((ib)/2) )ϕ(z) =(e^(−((ib)/2)) /(2(e^(ib)  −e^(ia) ))) ⇒  ∫_(−∞) ^(+∞) ϕ(2)dz =2iπ{(e^(−((ia)/2)) /(2(e^(ia) −e^(ib) ))) +(e^(−((ib)/2)) /(2(e^(ib) −e^(ia) )))}    =((iπ)/(e^(ia) −e^(ib) )){ e^(−((ia)/2)) −e^(−((ib)/2)) } =2I ⇒  I =((iπ(e^(−((ia)/2)) −e^(−((ib)/2)) ))/(2(e^(ia) −e^(ib) ))).
letI=0dx(x2eia)(x2eib)2I=+dx(x2eia)(x2eib)letφ(z)=1(z2eia)(z2eib)φ(z)=1(zeia2)(z+eia2)(zeib2)(z+eib2)thepolesofφare+eia2and+eib2residustheoremgive+φ(z)dz=2iπ{Res(φ,eia2)+Res(φ,eib2)}Res(φ,eia2)=limzeia2(zeia2)φ(z)=12eia2(eiaeib)=eia22(eiaeib)Res(φ,eib2)=limzeib2(zeib2)φ(z)=eib22(eibeia)+φ(2)dz=2iπ{eia22(eiaeib)+eib22(eibeia)}=iπeiaeib{eia2eib2}=2II=iπ(eia2eib2)2(eiaeib).
Answered by mind is power last updated on 01/Sep/19
let γ_r ={z∈C  such that∣z∣≤r ∣im(z)>0}  we have ∫_0 ^(+∞) (dx/((x^2 −e^(ia) )(x^2 −e^(ib) )))=(1/2)∫_(−∞) ^(+∞) (dx/((x^2 −e^(ia) )(x^2 −e^(ib) )))  let f(z)=(1/((z^2 −e^(ia) )(z^2 −e^(ib) )))  f(z)=(1/((r^2 e^(2i∅) −e^(ia) )(r^2 e^(2i∅) −e^(ib) )))  over γ_r   ∣f(z)∣≤(1/(∣r^2 −1∣^2 ))  we used ∣z+z′∣≥∣∣z∣−∣z′∣∣ twice  ⇒∫_(γr) f(z)dz≤∫_γ_r  (1/((r^2 −1)^2 ))dz=((πr)/((r^2 −1)^2 ))→0=as r→+∞  residu theorem  poles of f inside γ_r ∪]−∞.+∞[ ar e^(i(a/2)) .e^((ib)/2)   lim (z−e^(i(a/2)) ).f(z)=(1/(2e^(i(a/2)) .(e^(ia) −e^(ib) )))  lim(z−e^(i(b/2)) )f(z)=(1/(2e^(i(b/2)) (e^(ib) −e^(ia) )))  ∫_(−∞) ^(+∞) f(z)dz=2iπΣ_(residu) f(z)=2iπ((e^(−i(b/2)) /((e^(ib) −e^(ia) )2))−(e^(−((ia)/2)) /(2(e^(ib) −e^(ia) ))))  =iπ(((e^(−((ib)/2)) −e^((−ia)/2) )/((e^(i((a+b)/2)) (e^(i((b−a)/2)) −e^(i−((b−a)/2)) ))))=iπ((e^(−ib−i(a/2)) −e^(−ia−i(b/2)) )/(2isin(((a−b)/2))))
letγr={zCsuchthatz∣⩽rim(z)>0}wehave0+dx(x2eia)(x2eib)=12+dx(x2eia)(x2eib)letf(z)=1(z2eia)(z2eib)f(z)=1(r2e2ieia)(r2e2ieib)overγrf(z)∣⩽1r212weusedz+z∣⩾∣∣zz∣∣twiceγrf(z)dzγr1(r21)2dz=πr(r21)20=asr+residutheorempolesoffinsideγr].+[areia2.eib2lim(zeia2).f(z)=12eia2.(eiaeib)lim(zeib2)f(z)=12eib2(eibeia)+f(z)dz=2iπresiduf(z)=2iπ(eib2(eibeia)2eia22(eibeia))=iπ(eib2eia2(eia+b2(eiba2eiba2))=iπeibia2eiaib22isin(ab2)
Commented by mathmax by abdo last updated on 01/Sep/19
thank you sir.
thankyousir.
Commented by mind is power last updated on 01/Sep/19
y:re welcom
y:rewelcom

Leave a Reply

Your email address will not be published. Required fields are marked *