Menu Close

calculate-0-dx-x-4-x-2-2-




Question Number 138973 by mathmax by abdo last updated on 20/Apr/21
calculate ∫_0 ^(∞ )  (dx/(x^4 −x^2 +2))
calculate0dxx4x2+2
Answered by mathmax by abdo last updated on 22/Apr/21
Φ=∫_0 ^∞  (dx/(x^4 −x^2  +2))  let f(x)=(1/(x^4 −x^2 +2))  x^4 −x^2 +2=0 →t^2 −t+2=0 →Δ=1−8=−7 ⇒t_1 =((1+i(√7))/2)  ant t_2 =((1−i(√7))/2) ⇒f(x)=(1/((x^2 −t_1 )(x^2 −t_2 ))) =(1/(t_1 −t_2 ))((1/(x^2 −t_1 ))−(1/(x^2 −t_2 )))  =(1/(i(√7)))((1/(x^2 −t_1 ))−(1/(x^2 −t_2 ))) ⇒Φ=(1/(i(√7)))∫_0 ^∞   (dx/(x^2 −t_1 ))−(1/(i(√7)))∫_0 ^∞  (dx/(x^2 −t_2 ))  =Φ_1 −Φ_2   Φ_1 =(1/(2i(√7)))∫_(−∞) ^(+∞)  (dx/(x^2 −t_1 )) let w(z)=(1/(z^2 −((1+i(√7))/2)))  we have ∣((1+i(√7))/2)∣=(1/2)(√(1+7))=((2(√2))/2)=(√2) ⇒((1+i(√7))/2)=(√2)e^(iarctan((√7)))   ⇒w(z)=(1/((z−(^4 (√2))e^((i/2)arctan((√7))) )(z+(^4 (√2))e^((i/2)arctan((√7))) )))  ∫_(−∞) ^(+∞)  w(z)dx =2iπ Res(w,(^4 (√2)e^((i/2)arctan((√7))) )  =2iπ.(1/(2(^4 (√2))e^((i/2)arctan((√7))) )) =((iπ)/((^4 (√2))))e^(−(i/2)arctan((√7)))  ⇒  Φ_1 =(1/(2i(√7)))×((iπ)/((^4 (√2))))e^(−(i/2)arctan((√7)))  =(π/(2(√7)(^4 (√2))))e^(−(i/2)arctan((√7)))   Φ_2 =(1/(i(√7)))∫_0 ^∞ (dx/(x−t_2 )) =(1/(2i(√7)))×conj(∫_(−∞) ^∞  (dx/(x^2 −t_1 )))  =(1/(2i(√7)))×(−((iπ)/((^4 (√2))))e^((i/2)arctan((√7))) ) =−(π/(2(√7)(^4 (√2))))e^((i/2)arctan((√7)))  ⇒  Φ=Φ_1 −Φ_2 =(π/(2(√7)(^4 (√2))))(e^((i/2)arctan((√7))) +e^(−(i/2)arctan((√7))) )  =(π/(2(√7)(^4 (√2))))(2cos(arctan((√7))) =(π/( (√7)(^4 (√2))))cos(arctan((√7)))  we have cos(arctanx) =(1/( (√(1+x^2 )))) ⇒cos(arctan((√7)))  =(1/( (√(1+7)))) =(1/(2(√2))) ⇒Φ =(π/( (√7)(^4 (√2))))×(1/(2(√2)))  =(π/(2(√(14))(^4 (√2))))
Φ=0dxx4x2+2letf(x)=1x4x2+2x4x2+2=0t2t+2=0Δ=18=7t1=1+i72antt2=1i72f(x)=1(x2t1)(x2t2)=1t1t2(1x2t11x2t2)=1i7(1x2t11x2t2)Φ=1i70dxx2t11i70dxx2t2=Φ1Φ2Φ1=12i7+dxx2t1letw(z)=1z21+i72wehave1+i72∣=121+7=222=21+i72=2eiarctan(7)w(z)=1(z(42)ei2arctan(7))(z+(42)ei2arctan(7))+w(z)dx=2iπRes(w,(42ei2arctan(7))=2iπ.12(42)ei2arctan(7)=iπ(42)ei2arctan(7)Φ1=12i7×iπ(42)ei2arctan(7)=π27(42)ei2arctan(7)Φ2=1i70dxxt2=12i7×conj(dxx2t1)=12i7×(iπ(42)ei2arctan(7))=π27(42)ei2arctan(7)Φ=Φ1Φ2=π27(42)(ei2arctan(7)+ei2arctan(7))=π27(42)(2cos(arctan(7))=π7(42)cos(arctan(7))wehavecos(arctanx)=11+x2cos(arctan(7))=11+7=122Φ=π7(42)×122=π214(42)
Commented by mathmax by abdo last updated on 23/Apr/21
sorry  Φ=Φ_1 −Φ_2 =(π/(2(√7)(^4 (√2))))(2cos((1/2)arctan((√7)))  =(π/( (√7)(^4 (√2)))).cos((1/2)arctan((√7)))
sorryΦ=Φ1Φ2=π27(42)(2cos(12arctan(7))=π7(42).cos(12arctan(7))

Leave a Reply

Your email address will not be published. Required fields are marked *