calculate-0-dx-x-4-x-2-2- Tinku Tara June 3, 2023 Integration 0 Comments FacebookTweetPin Question Number 138973 by mathmax by abdo last updated on 20/Apr/21 calculate∫0∞dxx4−x2+2 Answered by mathmax by abdo last updated on 22/Apr/21 Φ=∫0∞dxx4−x2+2letf(x)=1x4−x2+2x4−x2+2=0→t2−t+2=0→Δ=1−8=−7⇒t1=1+i72antt2=1−i72⇒f(x)=1(x2−t1)(x2−t2)=1t1−t2(1x2−t1−1x2−t2)=1i7(1x2−t1−1x2−t2)⇒Φ=1i7∫0∞dxx2−t1−1i7∫0∞dxx2−t2=Φ1−Φ2Φ1=12i7∫−∞+∞dxx2−t1letw(z)=1z2−1+i72wehave∣1+i72∣=121+7=222=2⇒1+i72=2eiarctan(7)⇒w(z)=1(z−(42)ei2arctan(7))(z+(42)ei2arctan(7))∫−∞+∞w(z)dx=2iπRes(w,(42ei2arctan(7))=2iπ.12(42)ei2arctan(7)=iπ(42)e−i2arctan(7)⇒Φ1=12i7×iπ(42)e−i2arctan(7)=π27(42)e−i2arctan(7)Φ2=1i7∫0∞dxx−t2=12i7×conj(∫−∞∞dxx2−t1)=12i7×(−iπ(42)ei2arctan(7))=−π27(42)ei2arctan(7)⇒Φ=Φ1−Φ2=π27(42)(ei2arctan(7)+e−i2arctan(7))=π27(42)(2cos(arctan(7))=π7(42)cos(arctan(7))wehavecos(arctanx)=11+x2⇒cos(arctan(7))=11+7=122⇒Φ=π7(42)×122=π214(42) Commented by mathmax by abdo last updated on 23/Apr/21 sorryΦ=Φ1−Φ2=π27(42)(2cos(12arctan(7))=π7(42).cos(12arctan(7)) Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: The-diameter-of-the-wheel-of-a-car-is-36-cm-how-many-revolutions-correct-to-3-significant-figure-will-it-make-to-cover-a-distance-of-1-05km-take-pi-22-7-Next Next post: Question-73441 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.