Menu Close

calculate-0-dx-x-n-8-3-withn-gt-1-




Question Number 66470 by mathmax by abdo last updated on 15/Aug/19
calculate ∫_0 ^∞  (dx/((x^n  +8)^3 ))  withn>1
calculate0dx(xn+8)3withn>1
Commented by ~ À ® @ 237 ~ last updated on 16/Aug/19
let state ∀ a>0   f(a)=∫_0 ^∞   (dx/((x^n +a)^2 ))   f(a)=∫_0 ^∞   (dx/(a^2 [((x/a^(1/n) ))^n +1]^2 ))     when changing   x=a^(1/n) u       we get  f(a)= a^((1/n) −2) ∫_0 ^∞    (du/((u^n +1)^2 ))   now change v=(1/(u^n  +1))   ⇒ u=((1/v) −1)^(1/n) ⇒ du=(1/n).(((−1)/v^2 ))((1/v) −1)^((1/n) −1) dv  then  f(a)=(1/n). a^((1/n)−2)  ∫_0 ^1   v^2 .((1/v^2 ))((1/v) −1)^((1/n) −1) dv      = (a^((1/n)−2) /n) ∫_0 ^1   v^(1−(1/n)) (1−v)^((1/n)−1) dv        = (a^((1/n) −2) /n)  B(2−(1/n) , (1/n))      = (a^((1/n) −2) /n) .((Γ(2−(1/n))Γ((1/n)))/(Γ(2)))   as Γ(x+1)=xΓ(x)  we have  Γ(2−(1/n))=(1−(1/n))Γ(1−(1/n))   and Γ(2)=Γ(1)=1  So  f(a)=(a^((1/n) −2) /n) .(1−(1/n))Γ(1−(1/n))Γ((1/n))  as  Γ(1−z)Γ(z)=(π/(sin(πz)))  we finally get      f(a)= (1/n)(1−(1/n))a^((1/n) −2) .(π/(sin((π/n))))   Now we can deduce  f(8) , f(3), f(n)
letstatea>0f(a)=0dx(xn+a)2f(a)=0dxa2[(xa1n)n+1]2whenchangingx=a1nuwegetf(a)=a1n20du(un+1)2nowchangev=1un+1u=(1v1)1ndu=1n.(1v2)(1v1)1n1dvthenf(a)=1n.a1n201v2.(1v2)(1v1)1n1dv=a1n2n01v11n(1v)1n1dv=a1n2nB(21n,1n)=a1n2n.Γ(21n)Γ(1n)Γ(2)asΓ(x+1)=xΓ(x)wehaveΓ(21n)=(11n)Γ(11n)andΓ(2)=Γ(1)=1Sof(a)=a1n2n.(11n)Γ(11n)Γ(1n)asΓ(1z)Γ(z)=πsin(πz)wefinallygetf(a)=1n(11n)a1n2.πsin(πn)Nowwecandeducef(8),f(3),f(n)
Commented by ~ À ® @ 237 ~ last updated on 16/Aug/19
      if  ∀ p>2    g_p (a)=∫_0 ^∞  (dx/((x^n +a)^p ))   start as the previous and reach to  g_p (a)=(a^((1/n) −p) /n)  ∫_(0 ) ^1   v^p .((1/v^2 ))((1/v)−1)^((1/n)−1) dv         = (a^((1/n) −p) /n) ∫_0 ^1  v^(p−2+1−(1/n)) (1−v)^((1/n)−1) dv       =(a^((1/n)−p) /n) B(p−(1/n), (1/n))      =(a^((1/n)−p) /n) .((Γ(p−(1/n))Γ((1/n)))/(Γ(p)))    as  Γ(p+z)=z(z+1).......(z+p−1)Γ(z) we have Γ(p−(1/n))=Γ(p−1+(1−(1/n)))=Π_(k=0) ^(p−2) [(1−(1/n))+k]  Γ(1−(1/n))  Now    g_p (a)=(a^((1/n) −p) /(n.(p−1)!)) .(Π_(k=0) ^(p−2) [(1−(1/n))+k]) Γ(1−(1/n))Γ((1/n))    =(a^((1/n)−p) /(n.(p−1)!)) .(π/(sin((π/n)))) .Π_(k=0) ^(p−2) [(1−(1/n))+k]  now we can deduce  g_3 (8) ,∙.......
ifp>2gp(a)=0dx(xn+a)pstartasthepreviousandreachtogp(a)=a1npn01vp.(1v2)(1v1)1n1dv=a1npn01vp2+11n(1v)1n1dv=a1npnB(p1n,1n)=a1npn.Γ(p1n)Γ(1n)Γ(p)asΓ(p+z)=z(z+1).(z+p1)Γ(z)wehaveΓ(p1n)=Γ(p1+(11n))=p2k=0[(11n)+k]Γ(11n)Nowgp(a)=a1npn.(p1)!.(p2k=0[(11n)+k])Γ(11n)Γ(1n)=a1npn.(p1)!.πsin(πn).p2k=0[(11n)+k]nowwecandeduceg3(8),.
Commented by mathmax by abdo last updated on 16/Aug/19
thank you sir.
thankyousir.
Commented by mathmax by abdo last updated on 16/Aug/19
let g(a) =∫_0 ^∞    (dx/((a+x^n )^2 ))  with a>0  we have proved that  g(a) =((π(1−(1/n))a^((1/n)−2) )/(nsin((π/n))))   also we have   g^′ (a) =−∫_0 ^∞    ((2(a+x^n ))/((a+x^n )^4 ))dx =−2 ∫_0 ^∞   (dx/((a+x^n )^3 )) ⇒  ∫_0 ^∞   (dx/((a+x^n )^3 )) =−(1/2)g^′ (a)  we have   g^′ (a) =(π/(nsin((π/n))))(1−(1/n))((1/n)−2)a^((1/n)−3)  ⇒  ∫_0 ^∞   (dx/((a+x^n )^3 )) =((2π)/(nsin((π/n))))(1−(1/n))(2−(1/n))a^((1/n)−3)   a=8 ⇒∫_0 ^∞     (dx/((8+x^n )^3 )) =((2π)/(nsin((π/n))))(1−(1/n))(2−(1/n))8^((1/n)−3)
letg(a)=0dx(a+xn)2witha>0wehaveprovedthatg(a)=π(11n)a1n2nsin(πn)alsowehaveg(a)=02(a+xn)(a+xn)4dx=20dx(a+xn)30dx(a+xn)3=12g(a)wehaveg(a)=πnsin(πn)(11n)(1n2)a1n30dx(a+xn)3=2πnsin(πn)(11n)(21n)a1n3a=80dx(8+xn)3=2πnsin(πn)(11n)(21n)81n3
Commented by mathmax by abdo last updated on 16/Aug/19
error at final line ∫_0 ^∞    (dx/((a+x^n )^3 )) =(π/(2nsin((π/n))))(1−(1/n))(2−(1/n))a^((1/n)−3)   a=8 ⇒∫_0 ^∞    (dx/((8+x^n )^3 )) =(π/(2nsin((π/n))))(1−(1/n))(2−(1/n))8^((1/n)−3)
erroratfinalline0dx(a+xn)3=π2nsin(πn)(11n)(21n)a1n3a=80dx(8+xn)3=π2nsin(πn)(11n)(21n)81n3

Leave a Reply

Your email address will not be published. Required fields are marked *