Menu Close

calculate-0-e-2x-e-x-dx-




Question Number 74395 by mathmax by abdo last updated on 23/Nov/19
calculate ∫_0 ^∞    e^(−2x) [e^x ]dx
$${calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\:{e}^{−\mathrm{2}{x}} \left[{e}^{{x}} \right]{dx} \\ $$
Commented by ~blr237~ last updated on 23/Nov/19
let it be I  I=∫_0 ^∞ e^(−2x) [e^x ] e^(−x) d(e^x )=∫_1 ^∞ (([u])/u^3 )du  I=Σ_(k=1) ^∞ ∫_k ^(k+1) (([u])/u^3 )du=Σ_(k=1) ^∞ [((−k)/(2u^2 ))]_k ^(k+1)   I=Σ_(k=1) ^∞  [(1/(2k))−(k/(2(k+1)^2 ))]=Σ_(k=1) ^∞ [(1/(2k))−(1/(2(k+1)))+(1/((k+1)^2 ))]  I=(1/2)J+Σ_(k=1) ^∞ (1/((k+1)^2 ))   with   J=Σ_(k=1) ^∞ ((1/k)−(1/(k+1)))=1  I=(1/2)+(π^2 /6)−1=((π^2 −3)/6)
$${let}\:{it}\:{be}\:{I} \\ $$$${I}=\int_{\mathrm{0}} ^{\infty} {e}^{−\mathrm{2}{x}} \left[{e}^{{x}} \right]\:{e}^{−{x}} {d}\left({e}^{{x}} \right)=\int_{\mathrm{1}} ^{\infty} \frac{\left[{u}\right]}{{u}^{\mathrm{3}} }{du} \\ $$$${I}=\underset{{k}=\mathrm{1}} {\overset{\infty} {\sum}}\int_{{k}} ^{{k}+\mathrm{1}} \frac{\left[{u}\right]}{{u}^{\mathrm{3}} }{du}=\underset{{k}=\mathrm{1}} {\overset{\infty} {\sum}}\left[\frac{−{k}}{\mathrm{2}{u}^{\mathrm{2}} }\right]_{{k}} ^{{k}+\mathrm{1}} \\ $$$${I}=\underset{{k}=\mathrm{1}} {\overset{\infty} {\sum}}\:\left[\frac{\mathrm{1}}{\mathrm{2}{k}}−\frac{{k}}{\mathrm{2}\left({k}+\mathrm{1}\right)^{\mathrm{2}} }\right]=\underset{{k}=\mathrm{1}} {\overset{\infty} {\sum}}\left[\frac{\mathrm{1}}{\mathrm{2}{k}}−\frac{\mathrm{1}}{\mathrm{2}\left({k}+\mathrm{1}\right)}+\frac{\mathrm{1}}{\left({k}+\mathrm{1}\right)^{\mathrm{2}} }\right] \\ $$$${I}=\frac{\mathrm{1}}{\mathrm{2}}{J}+\underset{{k}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\left({k}+\mathrm{1}\right)^{\mathrm{2}} }\:\:\:{with}\:\:\:{J}=\underset{{k}=\mathrm{1}} {\overset{\infty} {\sum}}\left(\frac{\mathrm{1}}{{k}}−\frac{\mathrm{1}}{{k}+\mathrm{1}}\right)=\mathrm{1} \\ $$$${I}=\frac{\mathrm{1}}{\mathrm{2}}+\frac{\pi^{\mathrm{2}} }{\mathrm{6}}−\mathrm{1}=\frac{\pi^{\mathrm{2}} −\mathrm{3}}{\mathrm{6}} \\ $$$$ \\ $$
Commented by abdomathmax last updated on 24/Nov/19
let I =∫_0 ^∞  e^(−2x) [e^x ]dx vhangement e^x =t give  I =∫_1 ^(+∞)  e^(−2lnt) [t](dt/t) =∫_1 ^(+∞)  (([t])/t^3 )dt  =Σ_(n=1) ^∞  ∫_n ^(n+1) (n/t^3 )dt =Σ_(n=1) ^∞ n ∫_n ^(n+1)  t^(−3) dt  =Σ_(n=1) ^∞  n[(1/(−2))t^(−2) ]_n ^(n+1)  =−Σ_(n=1) ^∞ (n/2){(n+1)^(−2) −n^(−2) }  =Σ_(n=1) ^∞  (n/2){(1/n^2 )−(1/((n+1)^2 ))}  =(1/2)Σ_(n=1) ^∞ ((1/n) −(n/((n+1)^2 )))  =(1/2)Σ_(n=1) ^∞ {(1/n)−((n+1−1)/((n+1)^2 ))}  =(1/2)Σ_(n=1) ^∞ (1/n)−(1/2)Σ_(n=1) ^∞ (1/((n+1))) +(1/2)Σ_(n=1) ^∞  (1/((n+1)^2 ))  =(1/2)Σ_(n=1) ^∞  (1/n)−(1/2)Σ_(n=2) ^∞  (1/n) +(1/2)Σ_(n=2) ^∞  (1/n^2 )  =(1/2) +(1/2)(Σ_(n=1) ^∞  (1/n^2 )−1) =(1/2)×(π^2 /6) =(π^2 /(12))
$${let}\:{I}\:=\int_{\mathrm{0}} ^{\infty} \:{e}^{−\mathrm{2}{x}} \left[{e}^{{x}} \right]{dx}\:{vhangement}\:{e}^{{x}} ={t}\:{give} \\ $$$${I}\:=\int_{\mathrm{1}} ^{+\infty} \:{e}^{−\mathrm{2}{lnt}} \left[{t}\right]\frac{{dt}}{{t}}\:=\int_{\mathrm{1}} ^{+\infty} \:\frac{\left[{t}\right]}{{t}^{\mathrm{3}} }{dt} \\ $$$$=\sum_{{n}=\mathrm{1}} ^{\infty} \:\int_{{n}} ^{{n}+\mathrm{1}} \frac{{n}}{{t}^{\mathrm{3}} }{dt}\:=\sum_{{n}=\mathrm{1}} ^{\infty} {n}\:\int_{{n}} ^{{n}+\mathrm{1}} \:{t}^{−\mathrm{3}} {dt} \\ $$$$=\sum_{{n}=\mathrm{1}} ^{\infty} \:{n}\left[\frac{\mathrm{1}}{−\mathrm{2}}{t}^{−\mathrm{2}} \right]_{{n}} ^{{n}+\mathrm{1}} \:=−\sum_{{n}=\mathrm{1}} ^{\infty} \frac{{n}}{\mathrm{2}}\left\{\left({n}+\mathrm{1}\right)^{−\mathrm{2}} −{n}^{−\mathrm{2}} \right\} \\ $$$$=\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{{n}}{\mathrm{2}}\left\{\frac{\mathrm{1}}{{n}^{\mathrm{2}} }−\frac{\mathrm{1}}{\left({n}+\mathrm{1}\right)^{\mathrm{2}} }\right\} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\sum_{{n}=\mathrm{1}} ^{\infty} \left(\frac{\mathrm{1}}{{n}}\:−\frac{{n}}{\left({n}+\mathrm{1}\right)^{\mathrm{2}} }\right) \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\sum_{{n}=\mathrm{1}} ^{\infty} \left\{\frac{\mathrm{1}}{{n}}−\frac{{n}+\mathrm{1}−\mathrm{1}}{\left({n}+\mathrm{1}\right)^{\mathrm{2}} }\right\} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\sum_{{n}=\mathrm{1}} ^{\infty} \frac{\mathrm{1}}{{n}}−\frac{\mathrm{1}}{\mathrm{2}}\sum_{{n}=\mathrm{1}} ^{\infty} \frac{\mathrm{1}}{\left({n}+\mathrm{1}\right)}\:+\frac{\mathrm{1}}{\mathrm{2}}\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{\mathrm{1}}{\left({n}+\mathrm{1}\right)^{\mathrm{2}} } \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{\mathrm{1}}{{n}}−\frac{\mathrm{1}}{\mathrm{2}}\sum_{{n}=\mathrm{2}} ^{\infty} \:\frac{\mathrm{1}}{{n}}\:+\frac{\mathrm{1}}{\mathrm{2}}\sum_{{n}=\mathrm{2}} ^{\infty} \:\frac{\mathrm{1}}{{n}^{\mathrm{2}} } \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\:+\frac{\mathrm{1}}{\mathrm{2}}\left(\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{\mathrm{1}}{{n}^{\mathrm{2}} }−\mathrm{1}\right)\:=\frac{\mathrm{1}}{\mathrm{2}}×\frac{\pi^{\mathrm{2}} }{\mathrm{6}}\:=\frac{\pi^{\mathrm{2}} }{\mathrm{12}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *