calculate-0-e-2x-ln-1-e-3x-dx- Tinku Tara June 3, 2023 Integration 0 Comments FacebookTweetPin Question Number 141931 by mathmax by abdo last updated on 24/May/21 calculate∫0∞e−2xln(1+e3x)dx Answered by mindispower last updated on 24/May/21 ln(1+e3x)=3x+ln(1+e−3x)=∫0∞3xe−2\boldsymbolx\boldsymboldx+∫0∞e−2x.Σ(−1)kk+1e−3(1+k)xdx=∫0∞34ye−ydy+∑k⩾0(−1)kk+1∫0∞e−(5+3k)xdx=34Γ(2)+∑k⩾0(−1)kk+1.15+3k=34−∑k⩾0(−1)k2(5+3k)+32∑k⩾0(−1)kk+1=34+32ln(2)+12(−∑k⩾016k+5+16k+8)=32ln(2e12)+112(∑k⩾01(k+58)(k+86))=32ln(2e12)+112Ψ(86)−Ψ(56)16=32ln(2e12)+12Ψ(43)−12Ψ(56)Ψ(43)=Ψ(13)+3Ψ(13)=−γ−ln(6)−π2cot(π3)+2cos(2π3)ln(sin(π3))=−γ−ln(6)−π23−ln(32)Ψ(56)=−γ−ln(12)−π2cot(5π6)+2cos(2π6)ln(sin(π6))+2cos(4π6)ln(sin(2π6))=−γ−ln(12)+π23+ln(12)−ln(32) Commented by Mathspace last updated on 24/May/21 thsnkssir Answered by mathmax by abdo last updated on 26/May/21 Φ=∫0∞e−2xlog(1+e3x)dxbypartsΦ=[−12e−2xlog(1+e3x)]0∞+12∫0∞e−2x×3e3x1+e3xdx=log22+32∫0∞ex1+e3xdxbut∫0∞ex1+e3xdx=ex=t∫0∞t1+t3×dtt=∫1∞dtt3+1F(t)=1t3+1=1(t+1)(t2−t+1)=at+1+bt+ct2−t+1a=13,limt→+∞tF(t)=0=a+b⇒b=−13F(0)=1=a+c⇒c=1−13=23⇒F(t)=13(t+1)+−13t+23t2−t+1=13(t+1)−13t−2t2−t+1⇒∫1∞F(t)dt=[13log∣t+1t2−t+1∣]1∞(→0)+23∫1∞dtt2−t+1∫1∞dtt2−t+1=∫1∞dt(t−12)2+34=t−12=32y→y=2t−13=43∫13∞1y2+132dy=23[arctany]13∞=23(π2−π6)=23.π3=2π33⇒Φ=log22+32.2π33⇒Φ=log22+π3 Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Find-all-the-solution-that-fulfilled-the-equation-below-1-1-x-x-1-1-1-2013-2013-Next Next post: find-0-e-t-2-1-t-2-dt- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.