Menu Close

calculate-0-e-2x-ln-1-e-3x-dx-




Question Number 141931 by mathmax by abdo last updated on 24/May/21
calculate ∫_0 ^∞  e^(−2x) ln(1+e^(3x) )dx
calculate0e2xln(1+e3x)dx
Answered by mindispower last updated on 24/May/21
ln(1+e^(3x) )=3x+ln(1+e^(−3x) )  =∫_0 ^∞ 3xe^(−2x) dx+∫_0 ^∞ e^(−2x) .Σ(((−1)^k )/(k+1))e^(−3(1+k)x) dx  =∫_0 ^∞ (3/4)ye^(−y) dy+Σ_(k≥0) (((−1)^k )/(k+1))∫_0 ^∞ e^(−(5+3k)x) dx  =(3/4)Γ(2)+Σ_(k≥0) (((−1)^k )/(k+1)).(1/(5+3k))  =(3/4)−Σ_(k≥0) (((−1)^k )/(2(5+3k)))+(3/2)Σ_(k≥0) (((−1)^k )/(k+1))  =(3/4)+(3/2)ln(2)+(1/2)(−Σ_(k≥0) (1/(6k+5))+(1/(6k+8)))  =(3/2)ln(2e^(1/2) )+(1/(12))(Σ_(k≥0) (1/((k+(5/8))(k+(8/6)))))  =(3/2)ln(2e^(1/2) )+(1/(12))((Ψ((8/6))−Ψ((5/6)))/(1/6))  =(3/2)ln(2e^(1/2) )+(1/2)Ψ((4/3))−(1/2)Ψ((5/6))  Ψ((4/3))=Ψ((1/3))+3  Ψ((1/3))=−γ−ln(6)−(π/2)cot((π/3))+2cos(((2π)/3))ln(sin((π/3)))  =−γ−ln(6)−(π/(2(√3)))−ln(((√3)/2))  Ψ((5/6))=−γ−ln(12)−(π/2)cot(((5π)/6))+2cos(((2π)/6))ln(sin((π/6)))  +2cos(((4π)/6))ln(sin(((2π)/6)))  =−γ−ln(12)+(π/2)(√3)+ln((1/2))−ln(((√3)/2))
ln(1+e3x)=3x+ln(1+e3x)=03xe2\boldsymbolx\boldsymboldx+0e2x.Σ(1)kk+1e3(1+k)xdx=034yeydy+k0(1)kk+10e(5+3k)xdx=34Γ(2)+k0(1)kk+1.15+3k=34k0(1)k2(5+3k)+32k0(1)kk+1=34+32ln(2)+12(k016k+5+16k+8)=32ln(2e12)+112(k01(k+58)(k+86))=32ln(2e12)+112Ψ(86)Ψ(56)16=32ln(2e12)+12Ψ(43)12Ψ(56)Ψ(43)=Ψ(13)+3Ψ(13)=γln(6)π2cot(π3)+2cos(2π3)ln(sin(π3))=γln(6)π23ln(32)Ψ(56)=γln(12)π2cot(5π6)+2cos(2π6)ln(sin(π6))+2cos(4π6)ln(sin(2π6))=γln(12)+π23+ln(12)ln(32)
Commented by Mathspace last updated on 24/May/21
thsnks sir
thsnkssir
Answered by mathmax by abdo last updated on 26/May/21
Φ=∫_0 ^∞  e^(−2x) log(1+e^(3x) )dx  by parts  Φ=[−(1/2)e^(−2x) log(1+e^(3x) )]_0 ^∞ +(1/2)∫_0 ^∞  e^(−2x) ×((3e^(3x) )/(1+e^(3x) ))dx  =((log2)/2) +(3/2)∫_0 ^∞  (e^x /(1+e^(3x) ))dx  but  ∫_0 ^∞  (e^x /(1+e^(3x) ))dx =_(e^x =t)   ∫_0 ^∞   (t/(1+t^3 ))×(dt/t)=∫_1 ^∞ (dt/(t^3 +1))   F(t)=(1/(t^3  +1))=(1/((t+1)(t^2 −t +1)))=(a/(t+1))+((bt +c)/(t^2 −t+1))  a=(1/3),lim_(t→+∞) tF(t)=0 =a+b ⇒b=−(1/3)  F(0)=1=a+c ⇒c=1−(1/3)=(2/3) ⇒  F(t)=(1/(3(t+1)))+((−(1/3)t+(2/3))/(t^2 −t+1))=(1/(3(t+1)))−(1/3)((t−2)/(t^2 −t +1)) ⇒  ∫_1 ^∞ F(t)dt =[(1/3)log∣((t+1)/( (√(t^2 −t+1))))∣]_1 ^∞ (→0) +(2/3)∫_1 ^∞  (dt/(t^2 −t +1))  ∫_1 ^∞  (dt/(t^2 −t +1))=∫_1 ^∞  (dt/((t−(1/2))^2  +(3/4)))=_(t−(1/2)=((√3)/2)y →y=((2t−1)/( (√3))))   =(4/3)∫_(1/( (√3))) ^∞  (1/(y^2 +1))((√3)/2)dy =(2/( (√3)))[arctany]_(1/( (√3))) ^∞  =(2/( (√3)))((π/2)−(π/6))=(2/( (√3))).(π/3)  =((2π)/(3(√3))) ⇒Φ=((log2)/2)+(3/2).((2π)/(3(√3))) ⇒Φ=((log2)/2) +(π/( (√3)))
Φ=0e2xlog(1+e3x)dxbypartsΦ=[12e2xlog(1+e3x)]0+120e2x×3e3x1+e3xdx=log22+320ex1+e3xdxbut0ex1+e3xdx=ex=t0t1+t3×dtt=1dtt3+1F(t)=1t3+1=1(t+1)(t2t+1)=at+1+bt+ct2t+1a=13,limt+tF(t)=0=a+bb=13F(0)=1=a+cc=113=23F(t)=13(t+1)+13t+23t2t+1=13(t+1)13t2t2t+11F(t)dt=[13logt+1t2t+1]1(0)+231dtt2t+11dtt2t+1=1dt(t12)2+34=t12=32yy=2t13=43131y2+132dy=23[arctany]13=23(π2π6)=23.π3=2π33Φ=log22+32.2π33Φ=log22+π3

Leave a Reply

Your email address will not be published. Required fields are marked *