Menu Close

calculate-0-e-3x-2-1-x-2-dx-




Question Number 142989 by mathmax by abdo last updated on 08/Jun/21
calculate ∫_0 ^∞  (e^(−3x^2 ) /(1+x^2 ))dx
calculate0e3x21+x2dx
Answered by Dwaipayan Shikari last updated on 08/Jun/21
∫_0 ^∞ e^(−3x^2 ) ∫_0 ^∞ e^(−u(1+x^2 )) dxdu  =((√π)/2)∫_0 ^∞ (e^(−u) /( (√(u+3))))du     u+3=t^2   =e^3 (√π) ∫_(√3) ^∞ e^(−t^2 ) dt  =e^3 (√π) (∫_0 ^∞  e^(−t^2 )  dt−∫_0 ^(√3) e^(−t^2 )  dt)  Now (2/( (√π)))∫_0 ^x e^(−t^2 ) dx=efr(x)  =e^3 (π/2)−e^3 ((erf((√3)))/2)π=((e^3 π)/2)(1−erf((√3)))
0e3x20eu(1+x2)dxdu=π20euu+3duu+3=t2=e3π3et2dt=e3π(0et2dt03et2dt)Now2π0xet2dx=efr(x)=e3π2e3erf(3)2π=e3π2(1erf(3))
Answered by mathmax by abdo last updated on 09/Jun/21
Φ=∫_0 ^∞  (e^(−3x^2 ) /(1+x^2 ))dx ⇒Φ=∫_0 ^∞ (∫_0 ^∞  e^(−t(1+x^2 )) dt)e^(−3x^2 ) dx  =∫_0 ^∞  (∫_0 ^∞  e^(−(t+3)x^2 ) dx)e^(−t)  dt  but  ∫_0 ^∞  e^(−(t+3)x^2 ) dx =_((√(t+3))x=y)   ∫_(√3) ^∞  e^(−y^2 ) (dy/( (√(t+3))))=(1/( (√(t+3))))∫_(√3) ^∞  e^(−y^2 ) dy ⇒  Φ=∫_(√3) ^∞  e^(−y^2 ) dy∫_0 ^∞  (e^(−t) /( (√(t+3))))dt  and   ∫_0 ^∞  (e^(−t) /( (√(t+3))))dt =_((√(t+3))=z)   ∫_(√3) ^∞  (e^(−(z^2 −3)) /z)(2z)dz =2e^3 ∫_(√3) ^∞  e^(−z^2 ) dz ⇒  Φ=2e^3 (∫_(√3) ^∞  e^(−y^2 ) dy)^2   let λ_0 =∫_(√3) ^∞  e^(−y^2 ) dy ⇒  Φ=2e^3 λ_0 ^2
Φ=0e3x21+x2dxΦ=0(0et(1+x2)dt)e3x2dx=0(0e(t+3)x2dx)etdtbut0e(t+3)x2dx=t+3x=y3ey2dyt+3=1t+33ey2dyΦ=3ey2dy0ett+3dtand0ett+3dt=t+3=z3e(z23)z(2z)dz=2e33ez2dzΦ=2e3(3ey2dy)2letλ0=3ey2dyΦ=2e3λ02

Leave a Reply

Your email address will not be published. Required fields are marked *