Menu Close

calculate-0-e-x-ln-x-dx-with-gt-0-




Question Number 72025 by mathmax by abdo last updated on 23/Oct/19
calculate  ∫_0 ^∞  e^(−αx) ln(x)dx  with α>0
calculate0eαxln(x)dxwithα>0
Commented by mathmax by abdo last updated on 24/Oct/19
changement αx=t give   ∫_0 ^∞ e^(−αx) ln(x)dx=∫_0 ^∞ e^(−t) ln((t/α))(dt/α) =(1/α)∫_0 ^∞   e^(−t) {ln(t)−lnα}dt  =(1/α)∫_0 ^∞  e^(−t) ln(t)−((ln(α))/α)  =(1/α)(−γ)−((ln(α))/α) =−(1/α)( γ +ln(α))  ∫_0 ^∞  e^(−t) ln(t)dt=−γ  and this value is proved.
changementαx=tgive0eαxln(x)dx=0etln(tα)dtα=1α0et{ln(t)lnα}dt=1α0etln(t)ln(α)α=1α(γ)ln(α)α=1α(γ+ln(α))0etln(t)dt=γandthisvalueisproved.
Answered by mind is power last updated on 23/Oct/19
u=αx  ⇒∫_0 ^∞ e^(−u) ln((u/α)).(du/α)  =∫_0 ^(+∞) e^(−u) ln(u)(du/α)−∫_0 ^∞ e^(−u) .((ln(α))/α)du  =(1/α)∫_0 ^(+∞) e^(−u) ln(u)du+((ln(α))/α)[e^(−u) ]_0 ^(+∞)   =(1/α).γ−((ln(α))/α)=(1/α)(γ−ln(α))
u=αx0euln(uα).duα=0+euln(u)duα0eu.ln(α)αdu=1α0+euln(u)du+ln(α)α[eu]0+=1α.γln(α)α=1α(γln(α))

Leave a Reply

Your email address will not be published. Required fields are marked *