Menu Close

calculate-0-e-x-sin-x-2-x-2-dx-




Question Number 76782 by mathmax by abdo last updated on 30/Dec/19
calculate ∫_0 ^∞  e^(−x)   ((sin(x^2 ))/x^2 )dx
calculate0exsin(x2)x2dx
Answered by mind is power last updated on 04/Apr/20
A=∫_0 ^(+∞) e^(−x) ((sin(x^2 ))/x^2 )dx  sin(x^2 )=Σ_(n≥0) (((−1)^n .x^(4n+2) )/((2n+1)!))  A=∫_0 ^(+∞) Σ_(n≥0) (((−1)^n x^(4n) e^(−x) dx)/((2n+1)!))  A=Σ_(n≥0) (((−1)^n )/((2n+1)!))∫_0 ^(+∞) x^(4n) e^(−x) dx  =Σ_(n≥0) (((−1)^n Γ(4n+1))/((2n+1)!))=Σ_(n≥0) (((−1)^n .(4n)!)/((2n+1)!))  =Σ_(n≥0) .(((−1)^n .Π_(k=1) ^n (4k).Π_(k=0) ^(n−1) (4k+1).Π_(k=0) ^(n−1) (4k+2).Π_(k=0) ^(n−1) (4k+3))/(.Π_(k=0) ^(n−1) (2k+1).Π_(k=0) ^(n−1) (2k+2)))  =Σ_(n≥0) (((−1)^n .4^(4n) .n!.Π_(k=0) ^(n−1) (k+(1/4)).Π_(k=0) ^(n−1) ((1/2)+k).Π_(k=0) ^(n−1) (k+(3/4)))/(2^(2n) Π_(k=0) ^(n−1) ((1/2)+k).n!))  =Σ_(n≥0) ((.Π_(k=0) ^(n−1) (1+k).Π_(k=0) ^(n−1) ((1/4)+k).Π_(k=0) ^(n−1) ((3/4)+k))/(Π_(k=0) ^(n−1) ((1/2)+k).)).(((−4^3 )^n )/(n!))  =   _3 F_1 (1,(1/4),(3/4);(1/2);−4^3 )
A=0+exsin(x2)x2dxsin(x2)=n0(1)n.x4n+2(2n+1)!A=0+n0(1)nx4nexdx(2n+1)!A=n0(1)n(2n+1)!0+x4nexdx=n0(1)nΓ(4n+1)(2n+1)!=n0(1)n.(4n)!(2n+1)!=n0.(1)n.nk=1(4k).n1k=0(4k+1).n1k=0(4k+2).n1k=0(4k+3).n1k=0(2k+1).n1k=0(2k+2)=n0(1)n.44n.n!.n1k=0(k+14).n1k=0(12+k).n1k=0(k+34)22nn1k=0(12+k).n!=n0.n1k=0(1+k).n1k=0(14+k).n1k=0(34+k)n1k=0(12+k)..(43)nn!=3F1(1,14,34;12;43)

Leave a Reply

Your email address will not be published. Required fields are marked *