Menu Close

calculate-0-ln-1-e-3x-2-3-x-2-dx-




Question Number 73331 by mathmax by abdo last updated on 10/Nov/19
calculate ∫_0 ^∞    ((ln(1+e^(−3x^2 ) ))/(3+x^2 ))dx
$${calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{ln}\left(\mathrm{1}+{e}^{−\mathrm{3}{x}^{\mathrm{2}} } \right)}{\mathrm{3}+{x}^{\mathrm{2}} }{dx} \\ $$
Commented by mathmax by abdo last updated on 11/Nov/19
let A =∫_0 ^∞   ((ln(1+e^(−3x^2 ) ))/(x^2  +3))dx ⇒2A =∫_(−∞) ^(+∞)  ((ln(1+e^(−3x^2 ) ))/(x^2  +3))dx  let W(z)=((ln(1+e^(−3z^2 ) ))/(z^2  +3)) ⇒W(z)=((ln(1+e^(−3z^2 ) ))/((z−i(√3))(z+i(√3))))  ∫_(−∞) ^(+∞)   W(z)dz =2iπ Res(W,i(√3))  Res(W,i(√3)) =lim_(z→i(√3))   (z−i(√3))W(z)=((ln(1+e^(−3(i(√3))^2 ) ))/(2i(√3)))  =((ln(1+e^9 ))/(2i(√3))) ⇒∫_(−∞) ^(+∞)  W(z)dz =2iπ×((ln(1+e^9 ))/(2i(√3))) =(π/( (√3)))ln(1+e^9 ) ⇒  A =(π/(2(√3)))ln(1+e^9 ).
$${let}\:{A}\:=\int_{\mathrm{0}} ^{\infty} \:\:\frac{{ln}\left(\mathrm{1}+{e}^{−\mathrm{3}{x}^{\mathrm{2}} } \right)}{{x}^{\mathrm{2}} \:+\mathrm{3}}{dx}\:\Rightarrow\mathrm{2}{A}\:=\int_{−\infty} ^{+\infty} \:\frac{{ln}\left(\mathrm{1}+{e}^{−\mathrm{3}{x}^{\mathrm{2}} } \right)}{{x}^{\mathrm{2}} \:+\mathrm{3}}{dx} \\ $$$${let}\:{W}\left({z}\right)=\frac{{ln}\left(\mathrm{1}+{e}^{−\mathrm{3}{z}^{\mathrm{2}} } \right)}{{z}^{\mathrm{2}} \:+\mathrm{3}}\:\Rightarrow{W}\left({z}\right)=\frac{{ln}\left(\mathrm{1}+{e}^{−\mathrm{3}{z}^{\mathrm{2}} } \right)}{\left({z}−{i}\sqrt{\mathrm{3}}\right)\left({z}+{i}\sqrt{\mathrm{3}}\right)} \\ $$$$\int_{−\infty} ^{+\infty} \:\:{W}\left({z}\right){dz}\:=\mathrm{2}{i}\pi\:{Res}\left({W},{i}\sqrt{\mathrm{3}}\right) \\ $$$${Res}\left({W},{i}\sqrt{\mathrm{3}}\right)\:={lim}_{{z}\rightarrow{i}\sqrt{\mathrm{3}}} \:\:\left({z}−{i}\sqrt{\mathrm{3}}\right){W}\left({z}\right)=\frac{{ln}\left(\mathrm{1}+{e}^{−\mathrm{3}\left({i}\sqrt{\mathrm{3}}\right)^{\mathrm{2}} } \right)}{\mathrm{2}{i}\sqrt{\mathrm{3}}} \\ $$$$=\frac{{ln}\left(\mathrm{1}+{e}^{\mathrm{9}} \right)}{\mathrm{2}{i}\sqrt{\mathrm{3}}}\:\Rightarrow\int_{−\infty} ^{+\infty} \:{W}\left({z}\right){dz}\:=\mathrm{2}{i}\pi×\frac{{ln}\left(\mathrm{1}+{e}^{\mathrm{9}} \right)}{\mathrm{2}{i}\sqrt{\mathrm{3}}}\:=\frac{\pi}{\:\sqrt{\mathrm{3}}}{ln}\left(\mathrm{1}+{e}^{\mathrm{9}} \right)\:\Rightarrow \\ $$$${A}\:=\frac{\pi}{\mathrm{2}\sqrt{\mathrm{3}}}{ln}\left(\mathrm{1}+{e}^{\mathrm{9}} \right). \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *