Menu Close

calculate-0-ln-2-x-2-x-2-x-1-dx-




Question Number 73178 by mathmax by abdo last updated on 07/Nov/19
calculate ∫_0 ^∞  ((ln(2+x^2 ))/(x^2 −x+1))dx
calculate0ln(2+x2)x2x+1dx
Answered by mind is power last updated on 07/Nov/19
=∫_∞ ^0 ((ln(2+(1/x^2 )))/((1/x^2 )−(1/x)+1)).−(dx/x^2 )=∫_0 ^(+∞) ((ln(2x^2 +1)−ln(x^2 ))/(1−x+x^2 ))dx  =∫_0 ^(+∞) ((ln(2x^2 +1))/(1−x+x^2 ))dx−2∫_0 ^(+∞) ((ln(x))/(1−x+x^2 ))  ∫_0 ^(+∞) ((ln(x))/(1−x+x^2 ))dx=−∫_0 ^(+∞) ((ln(x))/(1−x+x^2 ))dx⇒=0  =∫_0 ^(+∞) ((ln(2x^2 +1))/(1−x+x^2 ))dx let f(t)=∫_0 ^(+∞) ((ln(tx^2 +1))/(1−x+x^2 ))dx  t≥0  f(0)=0  f′(t)=∫_0 ^∞ ((x^2 dx)/((tx^2 +1)(1−x+x^2 )))   f′(t)=∫_0 ^(+∞) ((ax+b)/(tx^2 +1))+((cx+d)/(1−x+x^2 ))  b+d=0  (a/t)+c=0⇒a+tc=0  a−b+c=0  dt−a+b=1  b=−d  a=−tc  −tc+d+c=0  dt+tc−d=1  d=c(t−1)  c(t−1)^2 +tc=1  c=(1/(t^2 −t+1)),d=((t−1)/(t^2 −t+1)),a=((−t)/(t^2 −t+1)),b=((1−t)/(t^2 −t+1))  f′(t)=(1/(t^2 −t+1))∫_0 ^(+∞) ((−tx+(1−t))/(tx^2 +1))dx+(1/(t^2 −t+1))∫_0 ^(+∞) ((x+t−1)/(x^2 −x+1))  =(1/(t^2 −t+1))∫_0 ^(+∞) ((−tx)/(tx^2 +1))+((1−t)/(t^2 −t+1))∫_0 ^(+∞) (dx/(tx^2 +1))+(1/(t^2 −t+1))∫_0 ^(+∞) ((x−(1/2))/(x^2 −x+1))dx  +((t−(1/2))/(t^2 −t+1))∫_0 ^(+∞) (dx/(x^2 −x+1))  =lim_(y→∞) ((1/2)/(t^2 −t+1))ln(((x^2 −x+1)/(tx^2 +1)))_0 ^y =−((ln(t))/(2(t^2 −t+1)))  ∫_0 ^(+∞) (dx/(tx^2 +1))=(1/( (√t))).(π/2)  ∫_0 ^(+∞) (dx/(x^2 −x+1))=∫_0 ^(+∞) (dx/((x−(1/2))^2 +(3/4)))=(2/( (√3))).{(π/2)+(π/6)}=((4π)/(3(√3)))  ⇒f′(t)=((ln(t))/(2(t^2 −t+1)))+((1−t)/(t^2 −t+1)).(π/2)(√t)+((t−(1/2))/(t^2 −t+1)).((4π)/(3(√3)))  ⇒our integral is f(2),f(0)=0  ∫_0 ^(+∞) ((ln(2x^2 +1))/(x^2 −x+1))dx=f(2)=∫_0 ^2 f′(t)dt  =∫_0 ^2 ((ln(t)dt)/(2(t^2 −t+1)))+(π/2)∫_0 ^2 (((1−t)(√t))/(t^2 −t+1))dt+((4π)/(3(√3)))∫_0 ^2 ((2t−1)/(2(t^2 −t+1)))dt  only ∫_0 ^2 ((ln(t))/(t^2 −t+1))dt is tricky  t^2 −t+1=(t−((1−i(√3))/2))(t−((1+i(√3))/2))  (1/(t^2 −t+1))=((−i(√3))/(t−((1−i(√3))/2)))+((i(√3))/(t−((1+i(√3))/2)))  ∫_0 ^2 ((ln(t))/(t^2 −t+1))dt=−i(√3)∫_0 ^2 ((ln(t))/(t−((1−i(√3))/2)))dt+i(√3)∫_0 ^2 (dt/(t−((1+i(√3))/2)))=c  j=((1−i(√3))/2),f=((1+i(√3))/2)  c=i(√3)∫_0 ^2 ((ln(t))/(1−ft))dt−i(√3)∫_0 ^2 ((ln(t))/(1−jt))dt  u=ft in firt ,jt=s in 2nd  c=i(√3)j∫_0 ^(2f) ((ln(u)+ln(j))/(1−u))du−i(√3)f∫_0 ^(2j) ((ln(s)+ln(f))/(1−s))ds  ∫_1 ^(1−z) ((ln(t))/(1−t))dt=Li_2 (z)  ⇒∫_0 ^(2f) ((ln(u)+ln(j))/(1−u))du=Li_2 (1−2f)−Li_2 (1)−log(j)log(1−2f)  ∫_0 ^(2j) ((ln(s)+ln(f))/(1−s))=Li_2 (1−2j)−Li_2 (1)−log(f)log(1−2j)  ⇒∫_0 ^2 ((ln(t))/(t^2 −t+1))dt=i(√3)(((1−i(√3))/2)){Li_2 (−i(√3))−Li_2 (1)+((iπ)/3)Log(−i(√3)}  −i(√3)(((1+i(√3))/2)){Li_2 (i(√3))−Li_2 (1)−((iπ)/3)log(i(√3))}
=0ln(2+1x2)1x21x+1.dxx2=0+ln(2x2+1)ln(x2)1x+x2dx=0+ln(2x2+1)1x+x2dx20+ln(x)1x+x20+ln(x)1x+x2dx=0+ln(x)1x+x2dx⇒=0=0+ln(2x2+1)1x+x2dxletf(t)=0+ln(tx2+1)1x+x2dxt0f(0)=0f(t)=0x2dx(tx2+1)(1x+x2)f(t)=0+ax+btx2+1+cx+d1x+x2b+d=0at+c=0a+tc=0ab+c=0dta+b=1b=da=tctc+d+c=0dt+tcd=1d=c(t1)c(t1)2+tc=1c=1t2t+1,d=t1t2t+1,a=tt2t+1,b=1tt2t+1f(t)=1t2t+10+tx+(1t)tx2+1dx+1t2t+10+x+t1x2x+1=1t2t+10+txtx2+1+1tt2t+10+dxtx2+1+1t2t+10+x12x2x+1dx+t12t2t+10+dxx2x+1=limy12t2t+1ln(x2x+1tx2+1)0y=ln(t)2(t2t+1)0+dxtx2+1=1t.π20+dxx2x+1=0+dx(x12)2+34=23.{π2+π6}=4π33f(t)=ln(t)2(t2t+1)+1tt2t+1.π2t+t12t2t+1.4π33ourintegralisf(2),f(0)=00+ln(2x2+1)x2x+1dx=f(2)=02f(t)dt=02ln(t)dt2(t2t+1)+π202(1t)tt2t+1dt+4π33022t12(t2t+1)dtonly02ln(t)t2t+1dtistrickyt2t+1=(t1i32)(t1+i32)1t2t+1=i3t1i32+i3t1+i3202ln(t)t2t+1dt=i302ln(t)t1i32dt+i302dtt1+i32=cj=1i32,f=1+i32c=i302ln(t)1ftdti302ln(t)1jtdtu=ftinfirt,jt=sin2ndc=i3j02fln(u)+ln(j)1udui3f02jln(s)+ln(f)1sds11zln(t)1tdt=Li2(z)02fln(u)+ln(j)1udu=Li2(12f)Li2(1)log(j)log(12f)02jln(s)+ln(f)1s=Li2(12j)Li2(1)log(f)log(12j)02ln(t)t2t+1dt=i3(1i32){Li2(i3)Li2(1)+iπ3Log(i3}i3(1+i32){Li2(i3)Li2(1)iπ3log(i3)}
Commented by mathmax by abdo last updated on 07/Nov/19
thankx sir.
thankxsir.
Commented by mind is power last updated on 07/Nov/19
y′re welcom sir
yrewelcomsir
Commented by aliesam last updated on 15/Dec/19
I didn′t get the first step where you factor −(dx/x^2 )  i mean the ln part
Ididntgetthefirststepwhereyoufactordxx2imeanthelnpart
Commented by aliesam last updated on 15/Dec/19
I mean    ∫_0 ^∞   ((ln(2+x^2 ))/(x^2 −x+1))=∫_∞ ^0 ((ln(2+(1/x^2 )))/((1/x^2 )−(1/x)+1)) . ((−dx)/x^2 )  ??
Imean0ln(2+x2)x2x+1=0ln(2+1x2)1x21x+1.dxx2??

Leave a Reply

Your email address will not be published. Required fields are marked *