Menu Close

calculate-0-ln-3-x-2-x-2-1-2-dx-




Question Number 72011 by mathmax by abdo last updated on 23/Oct/19
calculate ∫_0 ^∞   ((ln(3+x^2 ))/((x^2 +1)^2 ))dx
calculate0ln(3+x2)(x2+1)2dx
Commented by mathmax by abdo last updated on 25/Oct/19
let A =∫_0 ^∞  ((ln(3+x^2 ))/((x^2 +1)^2 ))dx ⇒2A =∫_(−∞) ^(+∞)  ((ln(3+x^2 ))/((x^2  +1)^2 ))dx let  f(z)=((ln(3+z^2 ))/((z^2  +1)^2 )) ⇒f(z) =((ln(3+z^2 ))/((z−i)^2 (z+i)^2 )) so the poles of f are i  and −i  (doubles) residus theorem give ∫_(−∞) ^(+∞) f(z)dz =2iπRes(f,i)  Res(f,i) =lim_(z→i)  (1/((2−1)!)){(z−i)^2 f(z)}^((1))   =lim_(z→i)   {((ln(3+z^2 ))/((z+i)^2 ))}^((1)) =lim_(z→i)    ((((2z)/(3+z^2 ))×(z+i)^2 −2(z+i)ln(3+z^2 ))/((z+i)^4 ))  =lim_(z→i)     ((((2z(z+i))/(3+z^2 ))−2ln(3+z^2 ))/((z+i)^3 )) =((((2i(2i))/2)−2ln(2))/((2i)^3 ))=((−2−2ln(2))/(−8i))  =((1+ln(2))/(4i)) ⇒ ∫_(−∞) ^(+∞) f(z)dz =2iπ×((1+ln(2))/(4i)) =(π/2)(1+ln(2))  =2A ⇒ A =(π/4)(1+ln(2))
letA=0ln(3+x2)(x2+1)2dx2A=+ln(3+x2)(x2+1)2dxletf(z)=ln(3+z2)(z2+1)2f(z)=ln(3+z2)(zi)2(z+i)2sothepolesoffareiandi(doubles)residustheoremgive+f(z)dz=2iπRes(f,i)Res(f,i)=limzi1(21)!{(zi)2f(z)}(1)=limzi{ln(3+z2)(z+i)2}(1)=limzi2z3+z2×(z+i)22(z+i)ln(3+z2)(z+i)4=limzi2z(z+i)3+z22ln(3+z2)(z+i)3=2i(2i)22ln(2)(2i)3=22ln(2)8i=1+ln(2)4i+f(z)dz=2iπ×1+ln(2)4i=π2(1+ln(2))=2AA=π4(1+ln(2))
Answered by mind is power last updated on 23/Oct/19
let f(t)=∫_0 ^(+∞) ((ln(t+x^2 ))/((x^2 +1)^2 ))dx,t≥3  f′(t)=∫_0 ^(+∞) (dx/((t+x^2 )(1+x^2 )^2 ))  f′(t)=(1/2)∫_(−∞) ^(+∞) (dx/((t+x^2 )(1+x^2 )^2 ))  letΓ= C_R ∪[−R,R] our contor C_R =Re^(iθ) ,0≤θ≤π  ∫_Γ (dx/((t+x^2 )(1+x^2 )^2 ))=2iπ(Res(f,i(√t))+res(f,i))  Res(f,i(√t))=(1/((1−t)^2 .2i(√t)))  Res(f,i)=(d/dx)(((x−i)^2 )/((t+x^2 )(x+i)^2 (x−i)^2 ))∣_(x=i)   =(d/dx)((1/((t+x^2 )(x+i)^2 )))=((−2x(x+i)^2 −2(x+i)(t+x^2 ))/((t+x^2 )^2 (x+i)^4 ))∣x=i  =((−2i(2i)^2 −4i(t−1))/((t−1)^2 (16)))=((12i−4it)/(16(t−1)^2 )).=((−i(t−3))/(4(t−1)^2 ))    f′(t)=(1/2)∫_(−∞) ^(+∞) (dx/((t+x^2 )(1+x^2 )^2 ))=iπ.((1/((1−t)^2 2i(√t)))−((i(t−3))/(4(t−1)^2 )))  =(π/((1−t)^2 .2(√t)))+((π(t−1−2))/(4(t−1)^2 ))dt  f(t)=∫((πdt)/((1−t)^2 .2(√t)))+∫(π/(4(t−1)))dt−(π/2)∫(dt/((t−1)^2 ))  for first u=(√t)⇒du=(1/(2(√t)))dt  f(t)=(π/4)ln(∣t−1∣)+(π/(2(t−1)))+∫((πdu)/((1−u)^2 (1+u)^2 ))  (a/(1−u))+(b/(1+u))+(π/(4(1+u)^2 ))+(π/(4(1−u)^2 ))  b−a=π  b+a=(π/2)  b=((3π)/4),a=−(π/4)  f(t)=(π/4)ln(∣t−1∣)+(π/(2(t−1)))+∫((−π)/(4(1−u)))dt+∫((3π)/(4(1+u)))+(π/4)∫(1/((1+u)^2 ))+(1/((1−u)^2 ))du  after integration and put u=(√t)  f(t)=(π/4)ln(∣t−1∣)+(π/(2(t−1)))+(π/4)ln(∣(√t)−1∣)+((3π)/4)ln(1+(√t))−(π/(4(1+(√t))))+(π/(4(1−(√(t)))))+c  f(0)=∫_0 ^(+∞) ((ln(x^2 ))/((1+x^2 )^2 ))  residus theorem  ∫_(−R) ^(−ε) ((ln(z^2 ))/((1+z^2 )^2 ))dz+∫_C_ε  ((ln(z^2 ))/((1+z^2 )^2 ))dz+∫_ε ^R ((ln(z^2 ))/((1+z^2 )^2 ))dz+∫_0 ^π .((ln(R^2 e^(i2θ)) ))/((1+R^2 e^(2iθ) )^2 )).Rie^(iθ) dθ  ∫_(−R) ^(−ε) ((ln(z^2 ))/((1+z^2 )^2 ))dz=∫_ε ^R ((2ln(z)+iπ)/((1+z^2 )^2 ))dz  ∫_(Cε) ((ln(z^2 ))/((1+z^2 )^2 ))dz=∫_π ^0 ((ln(ε^2 e^(2iθ) ))/((1+ε^2 e^(2iθ) )^2 )).εie^(iθ) dθ  ∣ln(re^(iθ) )∣=∣ln(r)+iθ∣=(√((ln(r))^2 +θ^2 ))  ∣1+εe^(iθ) ∣≥∣1−ε∣⇒  ∣∫_(Cε) ((ln(z^2 ))/((1+z^2 )^2 ))dz∣=∫_0 ^π ∣((ln(ε^2 e^(2iθ) ))/((1+ε^2 e^(2iθ) )^2 )).εie^(iθ) dθ∣≤((ε(√((ln(r))^2 +θ^2 )))/((1−ε^2 )^2 )).π→_(ε→0) 0  meme idee marche pour R→∞  ⇒∫_Γ ((ln(z^2 ))/((1+z^2 )^2 ))dz=2∫_0 ^(+∞) ((ln(z^2 ))/((1+z^2 )^2 ))+∫((2iπ)/((1+z^2 )^2 ))dz=2iπ Res(f,i)      Res(f,i)=(d/dz).((ln(z^2 ))/((z+i)^2 ))∣_(z=i)   =(((2/z).(z+i)^2 −2(z+i)ln(z^2 ))/((z+i)^4 ))=((−2i(2i)^2 −4iln(−1))/((2i)^4 ))=((8i+4π)/(16))  ⇒2∫_0 ^(+∞) ((ln(z^2 ))/((1+z^2 )^2 ))dz=2iπ.(((8i)/(16)))=−π  ⇒∫_0 ^∞ ((ln(z^2 ))/((1+z^2 )))dz=((−π)/2)  ⇒f(0)=−(π/2)  f(t)=(π/4)ln(∣t−1∣)+(π/(2(t−1)))+(π/4)ln(∣(√t)−1∣)+((3π)/4)ln(1+(√t))−(π/(4(1+(√t))))+(π/(4(1−(√(t)))))+c  ⇒f(0)=−(π/2)+(π/4)+(π/4)+c=−(π/2)⇒c=−(π/2)  ∫_0 ^(+∞) ((ln(3+x^2 ))/((1+x^2 )^2 ))dx=f(3)
letf(t)=0+ln(t+x2)(x2+1)2dx,t3f(t)=0+dx(t+x2)(1+x2)2f(t)=12+dx(t+x2)(1+x2)2letΓ=CR[R,R]ourcontorCR=Reiθ,0θπΓdx(t+x2)(1+x2)2=2iπ(Res(f,it)+res(f,i))Res(f,it)=1(1t)2.2itRes(f,i)=ddx(xi)2(t+x2)(x+i)2(xi)2x=i=ddx(1(t+x2)(x+i)2)=2x(x+i)22(x+i)(t+x2)(t+x2)2(x+i)4x=i=2i(2i)24i(t1)(t1)2(16)=12i4it16(t1)2.=i(t3)4(t1)2f(t)=12+dx(t+x2)(1+x2)2=iπ.(1(1t)22iti(t3)4(t1)2)=π(1t)2.2t+π(t12)4(t1)2dtf(t)=πdt(1t)2.2t+π4(t1)dtπ2dt(t1)2forfirstu=tdu=12tdtf(t)=π4ln(t1)+π2(t1)+πdu(1u)2(1+u)2a1u+b1+u+π4(1+u)2+π4(1u)2ba=πb+a=π2b=3π4,a=π4f(t)=π4ln(t1)+π2(t1)+π4(1u)dt+3π4(1+u)+π41(1+u)2+1(1u)2duafterintegrationandputu=tf(t)=π4ln(t1)+π2(t1)+π4ln(t1)+3π4ln(1+t)π4(1+t)+π4(1t)+cf(0)=0+ln(x2)(1+x2)2residustheoremRϵln(z2)(1+z2)2dz+Cϵln(z2)(1+z2)2dz+ϵRln(z2)(1+z2)2dz+0π.ln(R2ei2θ))(1+R2e2iθ)2.RieiθdθRϵln(z2)(1+z2)2dz=ϵR2ln(z)+iπ(1+z2)2dzCϵln(z2)(1+z2)2dz=π0ln(ϵ2e2iθ)(1+ϵ2e2iθ)2.ϵieiθdθln(reiθ)∣=∣ln(r)+iθ∣=(ln(r))2+θ21+ϵeiθ∣⩾∣1ϵ∣⇒Cϵln(z2)(1+z2)2dz∣=0πln(ϵ2e2iθ)(1+ϵ2e2iθ)2.ϵieiθdθ∣⩽ϵ(ln(r))2+θ2(1ϵ2)2.πϵ00memeideemarchepourRΓln(z2)(1+z2)2dz=20+ln(z2)(1+z2)2+2iπ(1+z2)2dz=2iπRes(f,i)Res(f,i)=ddz.ln(z2)(z+i)2z=i=2z.(z+i)22(z+i)ln(z2)(z+i)4=2i(2i)24iln(1)(2i)4=8i+4π1620+ln(z2)(1+z2)2dz=2iπ.(8i16)=π0ln(z2)(1+z2)dz=π2f(0)=π2f(t)=π4ln(t1)+π2(t1)+π4ln(t1)+3π4ln(1+t)π4(1+t)+π4(1t)+cf(0)=π2+π4+π4+c=π2c=π20+ln(3+x2)(1+x2)2dx=f(3)
Commented by mathmax by abdo last updated on 25/Oct/19
thank you sir.
thankyousir.
Commented by mind is power last updated on 25/Oct/19
y′re welcom
yrewelcom

Leave a Reply

Your email address will not be published. Required fields are marked *