Question Number 72011 by mathmax by abdo last updated on 23/Oct/19

Commented by mathmax by abdo last updated on 25/Oct/19

Answered by mind is power last updated on 23/Oct/19
![let f(t)=∫_0 ^(+∞) ((ln(t+x^2 ))/((x^2 +1)^2 ))dx,t≥3 f′(t)=∫_0 ^(+∞) (dx/((t+x^2 )(1+x^2 )^2 )) f′(t)=(1/2)∫_(−∞) ^(+∞) (dx/((t+x^2 )(1+x^2 )^2 )) letΓ= C_R ∪[−R,R] our contor C_R =Re^(iθ) ,0≤θ≤π ∫_Γ (dx/((t+x^2 )(1+x^2 )^2 ))=2iπ(Res(f,i(√t))+res(f,i)) Res(f,i(√t))=(1/((1−t)^2 .2i(√t))) Res(f,i)=(d/dx)(((x−i)^2 )/((t+x^2 )(x+i)^2 (x−i)^2 ))∣_(x=i) =(d/dx)((1/((t+x^2 )(x+i)^2 )))=((−2x(x+i)^2 −2(x+i)(t+x^2 ))/((t+x^2 )^2 (x+i)^4 ))∣x=i =((−2i(2i)^2 −4i(t−1))/((t−1)^2 (16)))=((12i−4it)/(16(t−1)^2 )).=((−i(t−3))/(4(t−1)^2 )) f′(t)=(1/2)∫_(−∞) ^(+∞) (dx/((t+x^2 )(1+x^2 )^2 ))=iπ.((1/((1−t)^2 2i(√t)))−((i(t−3))/(4(t−1)^2 ))) =(π/((1−t)^2 .2(√t)))+((π(t−1−2))/(4(t−1)^2 ))dt f(t)=∫((πdt)/((1−t)^2 .2(√t)))+∫(π/(4(t−1)))dt−(π/2)∫(dt/((t−1)^2 )) for first u=(√t)⇒du=(1/(2(√t)))dt f(t)=(π/4)ln(∣t−1∣)+(π/(2(t−1)))+∫((πdu)/((1−u)^2 (1+u)^2 )) (a/(1−u))+(b/(1+u))+(π/(4(1+u)^2 ))+(π/(4(1−u)^2 )) b−a=π b+a=(π/2) b=((3π)/4),a=−(π/4) f(t)=(π/4)ln(∣t−1∣)+(π/(2(t−1)))+∫((−π)/(4(1−u)))dt+∫((3π)/(4(1+u)))+(π/4)∫(1/((1+u)^2 ))+(1/((1−u)^2 ))du after integration and put u=(√t) f(t)=(π/4)ln(∣t−1∣)+(π/(2(t−1)))+(π/4)ln(∣(√t)−1∣)+((3π)/4)ln(1+(√t))−(π/(4(1+(√t))))+(π/(4(1−(√(t)))))+c f(0)=∫_0 ^(+∞) ((ln(x^2 ))/((1+x^2 )^2 )) residus theorem ∫_(−R) ^(−ε) ((ln(z^2 ))/((1+z^2 )^2 ))dz+∫_C_ε ((ln(z^2 ))/((1+z^2 )^2 ))dz+∫_ε ^R ((ln(z^2 ))/((1+z^2 )^2 ))dz+∫_0 ^π .((ln(R^2 e^(i2θ)) ))/((1+R^2 e^(2iθ) )^2 )).Rie^(iθ) dθ ∫_(−R) ^(−ε) ((ln(z^2 ))/((1+z^2 )^2 ))dz=∫_ε ^R ((2ln(z)+iπ)/((1+z^2 )^2 ))dz ∫_(Cε) ((ln(z^2 ))/((1+z^2 )^2 ))dz=∫_π ^0 ((ln(ε^2 e^(2iθ) ))/((1+ε^2 e^(2iθ) )^2 )).εie^(iθ) dθ ∣ln(re^(iθ) )∣=∣ln(r)+iθ∣=(√((ln(r))^2 +θ^2 )) ∣1+εe^(iθ) ∣≥∣1−ε∣⇒ ∣∫_(Cε) ((ln(z^2 ))/((1+z^2 )^2 ))dz∣=∫_0 ^π ∣((ln(ε^2 e^(2iθ) ))/((1+ε^2 e^(2iθ) )^2 )).εie^(iθ) dθ∣≤((ε(√((ln(r))^2 +θ^2 )))/((1−ε^2 )^2 )).π→_(ε→0) 0 meme idee marche pour R→∞ ⇒∫_Γ ((ln(z^2 ))/((1+z^2 )^2 ))dz=2∫_0 ^(+∞) ((ln(z^2 ))/((1+z^2 )^2 ))+∫((2iπ)/((1+z^2 )^2 ))dz=2iπ Res(f,i) Res(f,i)=(d/dz).((ln(z^2 ))/((z+i)^2 ))∣_(z=i) =(((2/z).(z+i)^2 −2(z+i)ln(z^2 ))/((z+i)^4 ))=((−2i(2i)^2 −4iln(−1))/((2i)^4 ))=((8i+4π)/(16)) ⇒2∫_0 ^(+∞) ((ln(z^2 ))/((1+z^2 )^2 ))dz=2iπ.(((8i)/(16)))=−π ⇒∫_0 ^∞ ((ln(z^2 ))/((1+z^2 )))dz=((−π)/2) ⇒f(0)=−(π/2) f(t)=(π/4)ln(∣t−1∣)+(π/(2(t−1)))+(π/4)ln(∣(√t)−1∣)+((3π)/4)ln(1+(√t))−(π/(4(1+(√t))))+(π/(4(1−(√(t)))))+c ⇒f(0)=−(π/2)+(π/4)+(π/4)+c=−(π/2)⇒c=−(π/2) ∫_0 ^(+∞) ((ln(3+x^2 ))/((1+x^2 )^2 ))dx=f(3)](https://www.tinkutara.com/question/Q72065.png)
Commented by mathmax by abdo last updated on 25/Oct/19

Commented by mind is power last updated on 25/Oct/19
