Menu Close

calculate-0-log-2-x-1-x-2-dx-




Question Number 142430 by Mathspace last updated on 31/May/21
calculate ∫_0 ^∞  ((log^2 x)/(1+x^2 ))dx
calculate0log2x1+x2dx
Answered by Dwaipayan Shikari last updated on 31/May/21
∫_0 ^∞ (x^a /(1+x^2 ))dx=(π/(2sin(((π(1−a))/2))))  ∫_0 ^∞ ((x^a log^2 (x))/(1+x^2 ))dx=(∂^2 /∂a^2 )((π/2)cosec((π/2)(1−a)))  ∫_0 ^∞ ((log^2 (x))/(1+x^2 ))dx=(∂^2 /∂a^2 )∣_(a=0) (π/2)cosec((π/2)(1−a))
0xa1+x2dx=π2sin(π(1a)2)0xalog2(x)1+x2dx=2a2(π2cosec(π2(1a)))0log2(x)1+x2dx=2a2a=0π2cosec(π2(1a))
Answered by mathmax by abdo last updated on 01/Jun/21
Φ=∫_0 ^∞  ((log^2 x)/(1+x^2 ))dx changement x=t^(1/2) [give  Φ=(1/4)∫_0 ^∞  ((log^2 t)/(1+t))(1/2)t^(−(1/2))  dt =(1/8)∫_0 ^∞  ((t^(−(1/2))  log^2 t)/(1+t))dt   let f(a)=∫_0 ^∞  (t^(a−1) /(1+t))dt ⇒f^′ (a)=∫_0 ^∞  (∂/∂a)((e^((a−1)logt) /(1+t)))dt  =∫_0 ^∞  ((t^(a−1) logt)/(1+t)) ⇒f^((2)) (a)=∫_0 ^∞  ((t^(a−1)  log^2 t)/(1+t))dt ⇒  f^((2)) ((1/2))=∫_0 ^∞  ((t^(−(1/2))  log^2 t)/(1+t))dt=8Φ  we have f(a)=(π/(sin(πa))) ⇒f^′ (a)=−((π^2  cos(πa))/(sin^2 (πa)))   (0<a<1)  and f^((2)) (a)=−π^2 .((−πsin(πa)sin^2 (πa)−cos(πa).2sin(πa)πcos(πa))/(sin^4 (πa)))  8Φ=f^((2)) ((1/2))=−π^2  ×((−π)/1)=π^3  ⇒Φ=(π^3 /8)
Φ=0log2x1+x2dxchangementx=t12[giveΦ=140log2t1+t12t12dt=180t12log2t1+tdtletf(a)=0ta11+tdtf(a)=0a(e(a1)logt1+t)dt=0ta1logt1+tf(2)(a)=0ta1log2t1+tdtf(2)(12)=0t12log2t1+tdt=8Φwehavef(a)=πsin(πa)f(a)=π2cos(πa)sin2(πa)(0<a<1)andf(2)(a)=π2.πsin(πa)sin2(πa)cos(πa).2sin(πa)πcos(πa)sin4(πa)8Φ=f(2)(12)=π2×π1=π3Φ=π38

Leave a Reply

Your email address will not be published. Required fields are marked *