Menu Close

calculate-0-log-2-x-8-x-4-2-dx-




Question Number 143546 by mathmax by abdo last updated on 15/Jun/21
calculate ∫_0 ^∞  ((log^2 x)/((8+x^4 )^2 ))dx
calculate0log2x(8+x4)2dx
Answered by mathmax by abdo last updated on 16/Jun/21
f(a)=∫_0 ^∞  ((log^2 x)/(a^4  +x^4 ))dx ⇒f^′ (a)=−∫_0 ^∞ ((4a^3 log^2 x)/((a^4  +x^4 )^2 )) dx ⇒  f^′ (2^(3/4) )=−4 (2)^(3/4) ∫_0 ^∞ ((log^2 x)/((8+x^4 )^2 ))dx =−2^(2+(3/4))  ∫_0 ^∞  ((log^2 x)/((8+x^4 )^2 ))dx  ⇒∫_0 ^∞  ((log^2 x)/((8+x^4 )^2 ))dx=−(1/2^((11)/4) )f^′ (2^(3/4) )  f(a)=_(x=at)   ∫_0 ^∞  ((log^2 (at))/(a^4 (1+t^4 )))adt =(1/a^3 )∫_0 ^∞   ((log^2 a +2logalogt +log^2 t)/(1+t^4 ))dt  =((log^2 a)/a^3 )∫_0 ^∞  (dt/(1+t^4 )) +((2loga)/a^3 )∫_0 ^∞  ((logt)/(1+t^4 ))dt +(1/a^3 )∫_0 ^∞  ((log^2 (t))/(1+t^4 ))dt  ∫_0 ^∞   (dt/(1+t^4 ))=_(t^4 =y) (1/4) ∫_0 ^∞     (y^((1/4)−1) /(1+y))dy =(1/4)×(π/(sin((π/4))))=(π/(4×((√2)/2)))  =(π/(2(√2)))  ∫_0 ^∞  ((logt)/(1+t^4 ))dt =_(t^4  =y)  (1/4)  ∫_0 ^∞ ((logy)/(1+y))×(1/4)y^((1/4)−1)  dy  =(1/(16))∫_0 ^∞  ((y^((1/4)−1)  logy)/(1+y))dy  =(1/(16))w^′ ((1/4)) with  w(λ)=∫_0 ^∞  (y^(λ−1) /(1+y))dy ⇒w^′ (λ)=∫_0 ^∞ ((y^(λ−1)  logy)/(1+y))dy  w(λ)=(π/(sin(πλ))) ⇒w^′ (λ)=−((π^2 cos(πλ))/(sin^2 (πλ))) ⇒  w^′ ((1/4))=−π^2  ×((1/( (√2)))/(((1/( (√2))))^2 ))=−2π^2 .(1/( (√2)))=−π^2 (√2) ⇒  ∫_0 ^∞  ((logt)/(1+t^4 ))dt =−((√2)/(16))π^2   ∫_0 ^∞  ((log^2 t)/(1+t^4 ))dt =_(t^4 =y)    (1/(16))∫_0 ^∞  ((log^2 y)/(1+y))×(1/4)y^((1/4)−1)  dt  =(1/(64))∫_0 ^∞ ((y^((1/4)−1) log^2 y)/(1+y))dy=(1/(64))w^((2)) ((1/4))  w^((2)) (λ)=−π^2 ×((−πsin(πλ)sin^2 (πλ)−2πsin(πλ)cos(πλ))/(sin^4 (πλ)))  =−π^3 ×((sin^2 (πλ)−2cos(πλ))/(sin^3 (πλ))) ⇒  w^((2)) ((1/4))=−π^3 ×(((1/2)−2×(1/( (√2))))/(((1/( (√2))))^3 ))=−π^3 ×(((1/2)−(√2))/(1/(2(√2))))  =−2(√2)π^3 (((1−2(√2))/2))=(√2)π^3 (2(√2)−1) ⇒  f(a)=((log^2 a)/a^3 )×(π/(2(√2))) +((2loga)/a^3 )(−((√2)/(16)))π^2 +(1/a^3 )×(1/(64))(√2)π^3 (2(√2)−1)  Φ=−(1/2^((11)/4) )f^′ (2^(3/4) )....
f(a)=0log2xa4+x4dxf(a)=04a3log2x(a4+x4)2dxf(234)=4(2)340log2x(8+x4)2dx=22+340log2x(8+x4)2dx0log2x(8+x4)2dx=12114f(234)f(a)=x=at0log2(at)a4(1+t4)adt=1a30log2a+2logalogt+log2t1+t4dt=log2aa30dt1+t4+2logaa30logt1+t4dt+1a30log2(t)1+t4dt0dt1+t4=t4=y140y1411+ydy=14×πsin(π4)=π4×22=π220logt1+t4dt=t4=y140logy1+y×14y141dy=1160y141logy1+ydy=116w(14)withw(λ)=0yλ11+ydyw(λ)=0yλ1logy1+ydyw(λ)=πsin(πλ)w(λ)=π2cos(πλ)sin2(πλ)w(14)=π2×12(12)2=2π2.12=π220logt1+t4dt=216π20log2t1+t4dt=t4=y1160log2y1+y×14y141dt=1640y141log2y1+ydy=164w(2)(14)w(2)(λ)=π2×πsin(πλ)sin2(πλ)2πsin(πλ)cos(πλ)sin4(πλ)=π3×sin2(πλ)2cos(πλ)sin3(πλ)w(2)(14)=π3×122×12(12)3=π3×122122=22π3(1222)=2π3(221)f(a)=log2aa3×π22+2logaa3(216)π2+1a3×1642π3(221)Φ=12114f(234).

Leave a Reply

Your email address will not be published. Required fields are marked *