calculate-0-log-2-x-8-x-4-2-dx- Tinku Tara June 3, 2023 Relation and Functions 0 Comments FacebookTweetPin Question Number 143546 by mathmax by abdo last updated on 15/Jun/21 calculate∫0∞log2x(8+x4)2dx Answered by mathmax by abdo last updated on 16/Jun/21 f(a)=∫0∞log2xa4+x4dx⇒f′(a)=−∫0∞4a3log2x(a4+x4)2dx⇒f′(234)=−4(2)34∫0∞log2x(8+x4)2dx=−22+34∫0∞log2x(8+x4)2dx⇒∫0∞log2x(8+x4)2dx=−12114f′(234)f(a)=x=at∫0∞log2(at)a4(1+t4)adt=1a3∫0∞log2a+2logalogt+log2t1+t4dt=log2aa3∫0∞dt1+t4+2logaa3∫0∞logt1+t4dt+1a3∫0∞log2(t)1+t4dt∫0∞dt1+t4=t4=y14∫0∞y14−11+ydy=14×πsin(π4)=π4×22=π22∫0∞logt1+t4dt=t4=y14∫0∞logy1+y×14y14−1dy=116∫0∞y14−1logy1+ydy=116w′(14)withw(λ)=∫0∞yλ−11+ydy⇒w′(λ)=∫0∞yλ−1logy1+ydyw(λ)=πsin(πλ)⇒w′(λ)=−π2cos(πλ)sin2(πλ)⇒w′(14)=−π2×12(12)2=−2π2.12=−π22⇒∫0∞logt1+t4dt=−216π2∫0∞log2t1+t4dt=t4=y116∫0∞log2y1+y×14y14−1dt=164∫0∞y14−1log2y1+ydy=164w(2)(14)w(2)(λ)=−π2×−πsin(πλ)sin2(πλ)−2πsin(πλ)cos(πλ)sin4(πλ)=−π3×sin2(πλ)−2cos(πλ)sin3(πλ)⇒w(2)(14)=−π3×12−2×12(12)3=−π3×12−2122=−22π3(1−222)=2π3(22−1)⇒f(a)=log2aa3×π22+2logaa3(−216)π2+1a3×1642π3(22−1)Φ=−12114f′(234)…. Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: calculate-the-polar-integral-that-give-the-area-of-the-region-bunded-by-the-curves-r-2-r-4cos-and-r-cos-3-Next Next post: prove-that-lim-x-1-sin-cos-x-x-1-2-3-2- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.