Menu Close

calculate-0-log-2-x-x-2-x-1-dx-




Question Number 139402 by mathmax by abdo last updated on 26/Apr/21
calculate ∫_0 ^∞  ((log^2 x)/(x^2  +x+1))dx
calculate0log2xx2+x+1dx
Answered by mathmax by abdo last updated on 29/Apr/21
let f(a)=∫_0 ^∞  ((x^a logx)/(x^2  +x+1))dx ⇒f(a)=∫_0 ^∞  ((e^(alogx)  logx)/(x^2  +x+1))dx  ⇒f^′ (a)=∫_0 ^∞   ((x^a  log^2 x)/(x^2  +x+1))dx ⇒f^′ (o)=∫_0 ^∞  ((log^2 x)/(x^2  +x+1))dx  f(a)=−(1/2)Re(Σ Res(ϕ a_i ) )withϕ(z)=(z^a /(z^2  +z+1))log^2 z  we have ϕ(z)=((z^a log^2 z)/((z−e^((2iπ)/3) )(z−e^(−((2iπ)/3)) )))  Res(ϕ,e^((2iπ)/3) ) =((e^((2iπa)/3)  (((2iπ)/3))^2 )/(2isin(((2π)/3)))) =−((4π^2 )/(9(i(√3))))e^((2iπa)/3)  =−((4π^2 )/(9i(√3))) e^((2iπa)/3)   Res(ϕ,e^(−((2iπ)/3)) ) =((e^(−((2iπa)/3)) (−((2iπ)/3))^2 )/((−2isin(((2π)/3)))))=−((4π^2 )/(9(−i(√3))))e^(−((2iπa)/3))  =((4π^2 )/(9i(√3)))e^(−((2iπa)/3))   ⇒Σ Res(ϕ  z_i )=−((4π^2 )/(9i(√3))){ e^((2iπa)/3) −e^(−((2iπa)/3)) }  =−((4π^2 )/(9i(√3)))(2i sin(((2πa)/3)) =−((8π^2 )/(9(√3)))sin(((2πa)/3)) ⇒  f(a) =((4π^2 )/(9(√3)))sin(((2πa)/3)) ⇒f^′ (a) =((4π^2 )/(9(√3)))×((2π)/3)cos(((2πa)/3))  =((8π^3 )/(27(√3))) cos(((2πa)/3)) ⇒f^′ (0)=((8π^3 )/(27(√3)))  ⇒  ∫_0 ^∞   ((log^2 x)/(x^2  +x+1))dx =((8π^3 )/(27(√3)))
letf(a)=0xalogxx2+x+1dxf(a)=0ealogxlogxx2+x+1dxf(a)=0xalog2xx2+x+1dxf(o)=0log2xx2+x+1dxf(a)=12Re(ΣRes(φai))withφ(z)=zaz2+z+1log2zwehaveφ(z)=zalog2z(ze2iπ3)(ze2iπ3)Res(φ,e2iπ3)=e2iπa3(2iπ3)22isin(2π3)=4π29(i3)e2iπa3=4π29i3e2iπa3Res(φ,e2iπ3)=e2iπa3(2iπ3)2(2isin(2π3))=4π29(i3)e2iπa3=4π29i3e2iπa3ΣRes(φzi)=4π29i3{e2iπa3e2iπa3}=4π29i3(2isin(2πa3)=8π293sin(2πa3)f(a)=4π293sin(2πa3)f(a)=4π293×2π3cos(2πa3)=8π3273cos(2πa3)f(0)=8π32730log2xx2+x+1dx=8π3273

Leave a Reply

Your email address will not be published. Required fields are marked *