Menu Close

calculate-0-log-3-x-1-x-3-dx-




Question Number 142425 by Mathspace last updated on 31/May/21
calculate ∫_0 ^∞  ((log^3 x)/(1+x^3 ))dx
calculate0log3x1+x3dx
Answered by mathmax by abdo last updated on 02/Jun/21
Φ=∫_0 ^∞  ((log^3 x)/(1+x^3 ))dx changement x^3  =t give  Φ=∫_0 ^∞   (((log(t^(1/3) ))^3 )/(1+t))(1/3)t^((1/3)−1)  dt =(1/3^4 )∫_0 ^∞ t^((1/3)−1)   ((log^3 t)/(1+t))dt  let f(a)=∫_0 ^∞  (t^(a−1) /(1+t))dt with  0<a<1 we have f(a)=(π/(sin(πa)))  and f^′ (a) =∫_0 ^∞ t^(a−1)  ((logt)/(1+t))dt ⇒f^(,,) (a)=∫_0 ^∞  ((t^(a−1)  log^2 t)/(1+t))dt ⇒  f^((3)) (a)=∫_0 ^∞  ((t^(a−1)  log^3 t)/(1+t))dt ⇒f^((3)) ((1/3))=∫_0 ^∞  ((t^((1/3)−1)  log^3 t)/(1+t))dt  =3^4  Φ but f(a)=(π/(sin(πa))) ⇒f^′ (a)=−π^2 ((cos(πa))/(sin^2 (πa))) ⇒  f^((2)) (a)=−π^2 .((−πsin(πa)−2πsin(πa)cos(πa))/(sin^4 (πa)))  =π^3  .((1+2cos(πa))/(sin^3 (πa))) ⇒  f^((3)) (a)=π^3 .((−2πsin(πa).sin^3 (πa)−3πsin^2 (πa)cos(πa))/(sin^6 (πa)))  =π^4 .((−2sin^2 (πa)−3 cos(πa))/(sin^4 (πa))) ⇒  f^((3)) ((1/3))=−π^4 ×((2(((√3)/2))^2 +3.(1/2))/((((√3)/2))^4 ))=−π^4 .(((3/2)+(3/2))/(9/(16)))  =(−π^4 ).(((16)/9))(3) =−((16π^4 )/3) ⇒Φ=−((16π^4 )/3^5 )
Φ=0log3x1+x3dxchangementx3=tgiveΦ=0(log(t13))31+t13t131dt=1340t131log3t1+tdtletf(a)=0ta11+tdtwith0<a<1wehavef(a)=πsin(πa)andf(a)=0ta1logt1+tdtf,,(a)=0ta1log2t1+tdtf(3)(a)=0ta1log3t1+tdtf(3)(13)=0t131log3t1+tdt=34Φbutf(a)=πsin(πa)f(a)=π2cos(πa)sin2(πa)f(2)(a)=π2.πsin(πa)2πsin(πa)cos(πa)sin4(πa)=π3.1+2cos(πa)sin3(πa)f(3)(a)=π3.2πsin(πa).sin3(πa)3πsin2(πa)cos(πa)sin6(πa)=π4.2sin2(πa)3cos(πa)sin4(πa)f(3)(13)=π4×2(32)2+3.12(32)4=π4.32+32916=(π4).(169)(3)=16π43Φ=16π435

Leave a Reply

Your email address will not be published. Required fields are marked *