calculate-0-logx-1-x-4-dx- Tinku Tara June 3, 2023 Relation and Functions 0 Comments FacebookTweetPin Question Number 141220 by mathmax by abdo last updated on 16/May/21 calculate∫0∞logx1+x4dx Answered by Ar Brandon last updated on 16/May/21 Φ=∫0∞lnx1+x4dx,x4=u⇒dx=14u−3/4du=116∫0∞u−3/4lnu1+uduf(α)=∫0∞uα−1(1+u)du=β(α,1−α)=Γ(α)Γ(1−α)Γ(1)=πsin(πα)f′(α)=∫0∞uα−1ln(u)1+udu=−π22⋅cos(πα)cosec2(πα)f′(14)=∫0∞u−3/4ln(u)1+udu=−π22cos(π4)cosec2(π4) Answered by mathmax by abdo last updated on 16/May/21 letf(a)=∫0∞xa1+x4dx⇒f(a)=∫0∞ealogx1+x4dx⇒f′(a)=∫0∞xalogx1+x4dx⇒f′(0)=∫0∞logx1+x4dxchangementx=t14givef(a)=14∫0∞ta41+tt14−1dt=14∫0∞ta+14−11+t=π4sin(π(a+1)4)⇒f′(a)=−π4×π4cos(π(a+1)4)sin2(π(a+1)4)⇒f′(0)=−π216.cos(π4)sin2(π4)=−π216×2212=−π2216⇒∫0∞logx1+x4dx=−π2162 Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: p-p-1-dp-Next Next post: Question-141221 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.