Menu Close

calculate-0-logx-1-x-4-dx-




Question Number 141220 by mathmax by abdo last updated on 16/May/21
calculate  ∫_0 ^∞   ((logx)/(1+x^4 )) dx
calculate0logx1+x4dx
Answered by Ar Brandon last updated on 16/May/21
Φ=∫_0 ^∞ ((lnx)/(1+x^4 ))dx , x^4 =u ⇒dx=(1/4)u^(−3/4) du      =(1/(16))∫_0 ^∞ ((u^(−3/4) lnu)/(1+u))du  f(α)=∫_0 ^∞ (u^(α−1) /((1+u)))du=β(α,1−α)           =((Γ(α)Γ(1−α))/(Γ(1)))=(π/(sin(πα)))  f ′(α)=∫_0 ^∞ ((u^(α−1) ln(u))/(1+u))du=−(π^2 /2)∙cos(πα)cosec^2 (πα)  f ′((1/4))=∫_0 ^∞ ((u^(−3/4) ln(u))/(1+u))du=−(π^2 /2)cos((π/4))cosec^2 ((π/4))
Φ=0lnx1+x4dx,x4=udx=14u3/4du=1160u3/4lnu1+uduf(α)=0uα1(1+u)du=β(α,1α)=Γ(α)Γ(1α)Γ(1)=πsin(πα)f(α)=0uα1ln(u)1+udu=π22cos(πα)cosec2(πα)f(14)=0u3/4ln(u)1+udu=π22cos(π4)cosec2(π4)
Answered by mathmax by abdo last updated on 16/May/21
let f(a) =∫_0 ^∞   (x^a /(1+x^4 ))dx ⇒f(a) =∫_0 ^∞  (e^(alogx) /(1+x^4 ))dx ⇒  f^′ (a) =∫_0 ^∞   ((x^a  logx)/(1+x^4 ))dx ⇒f^′ (0) =∫_0 ^∞  ((logx)/(1+x^4 ))dx  changement x=t^(1/4)  give f(a) =(1/4)∫_0 ^∞   (t^(a/4) /(1+t)) t^((1/4)−1)  dt  =(1/4)∫_0 ^∞  (t^(((a+1)/4)−1) /(1+t)) =(π/(4sin(((π(a+1))/4)))) ⇒f^′ (a)=−(π/4)×(((π/4)cos(((π(a+1))/4)))/(sin^2 (((π(a+1))/4))))  ⇒f^′ (0) =−(π^2 /(16)).((cos((π/4)))/(sin^2 ((π/4)))) =−(π^2 /(16))×(((√2)/2)/(1/2)) =−((π^2 (√2))/(16)) ⇒  ∫_0 ^∞   ((logx)/(1+x^4 ))dx =−(π^2 /(16))(√2)
letf(a)=0xa1+x4dxf(a)=0ealogx1+x4dxf(a)=0xalogx1+x4dxf(0)=0logx1+x4dxchangementx=t14givef(a)=140ta41+tt141dt=140ta+1411+t=π4sin(π(a+1)4)f(a)=π4×π4cos(π(a+1)4)sin2(π(a+1)4)f(0)=π216.cos(π4)sin2(π4)=π216×2212=π22160logx1+x4dx=π2162

Leave a Reply

Your email address will not be published. Required fields are marked *