Menu Close

calculate-0-logx-x-2-x-2-dx-




Question Number 138132 by mathmax by abdo last updated on 10/Apr/21
calculate ∫_0 ^∞  ((logx)/(x^2 −x+2))dx
calculate0logxx2x+2dx
Answered by Ñï= last updated on 13/Apr/21
I=∫_0 ^∞ ((ln x)/(x^2 −x+2))dx=(√2)∫_0 ^∞ ((ln ((√2)x))/(2x^2 −(√2)x+2))dx=(√2)∫_0 ^∞ (((1/2)ln2+lnx)/(2x^2 −(√2)x+2))dx  =((ln2)/( (√2)))∫_0 ^∞ (dx/(2x^2 −(√2)x+2))+(√2)∫_0 ^∞ ((lnx)/(2x^2 −(√2)x+2))dx=I_1 +I_2   I_2 =(√2)∫_0 ^∞ ((−lnx)/(2−(√2)x+2x^2 ))dx=−I_2   ⇒I_2 =0  I=I_1 =((ln2)/( (√2)))∫_0 ^∞ (dx/(((√2)x−(1/2))^2 +(7/4)))=((ln2)/( 2(√(7/4))))tan^(−1) (((√2)x−(1/2))/( (√(7/4))))∣_0 ^∞   =(1/( (√7)))((π/2)+tan^(−1) (1/( (√7))))ln 2
I=0lnxx2x+2dx=20ln(2x)2x22x+2dx=2012ln2+lnx2x22x+2dx=ln220dx2x22x+2+20lnx2x22x+2dx=I1+I2I2=20lnx22x+2x2dx=I2I2=0I=I1=ln220dx(2x12)2+74=ln2274tan12x12740=17(π2+tan117)ln2

Leave a Reply

Your email address will not be published. Required fields are marked *