Menu Close

calculate-0-logx-x-6-1-dx-




Question Number 143545 by mathmax by abdo last updated on 15/Jun/21
calculate ∫_0 ^∞  ((logx)/(x^6  +1))dx
calculate0logxx6+1dx
Answered by Pagnol last updated on 15/Jun/21
I=∫_0 ^∞ ((logx)/(x^6 +1))dx , u=x^6 ⇒x=u^(1/6) ⇒dx=(1/6)u^(−(5/6)) du    =(1/(36))∫_0 ^∞ ((u^(−(5/6)) logu)/(u+1))du  I(α)=∫_0 ^∞ (u^α /(u+1))du=β(α+1, −α)=((Γ(α+1)Γ(−α))/(Γ(1)))  I′(α)=∫_0 ^∞ ((u^α lnu)/(u+1))du=−Γ(α+1)Γ′(−α)+Γ′(α+1)Γ(−α)  I′(−(5/6))=−Γ((1/6))Γ′((5/6))+Γ′((1/6))Γ((5/6))                   =Γ((1/6))Γ((5/6))[ψ((1/6))−ψ((5/6))]                   =(π/(sin((π/6))))[−πcot((5/6)π)]=2π(π(√3))=2(√3)π^2   I=(1/(36))I′(−(5/6))=((√3)/(18))π^2
I=0logxx6+1dx,u=x6x=u16dx=16u56du=1360u56loguu+1duI(α)=0uαu+1du=β(α+1,α)=Γ(α+1)Γ(α)Γ(1)I(α)=0uαlnuu+1du=Γ(α+1)Γ(α)+Γ(α+1)Γ(α)I(56)=Γ(16)Γ(56)+Γ(16)Γ(56)=Γ(16)Γ(56)[ψ(16)ψ(56)]=πsin(π6)[πcot(56π)]=2π(π3)=23π2I=136I(56)=318π2
Answered by mathmax by abdo last updated on 15/Jun/21
Φ=∫_0 ^∞  ((logx)/(x^6  +1))dx changement x^6  =t give  Φ=(1/6)∫_0 ^∞   ((log(t^(1/6) ))/(1+t))t^((1/6)−1) dt =(1/(36))∫_0 ^∞  ((t^((1/6)−1)  logt)/(1+t))dt  let f(a)=∫_0 ^∞  (t^(a−1) /(1+t))dt ⇒f^′ (a)=∫_0 ^∞ ((t^(a−1) logt)/(1+t))dt ⇒f^′ ((1/6))=36Φ ⇒  Φ=(1/(36))f^′ ((1/6))  we know f(a)=(π/(sin(πa))) ⇒f^′ (a)=−((π^2 cos(πa))/(sin^2 (πa))) ⇒  f^′ ((1/6))=−((π^2 ×((√3)/2))/(((1/2))^2 )) =−4π^2 .((√3)/2)=−2π^2 (√3) ⇒  Φ=(1/(36))(−2π^2  (√3)) =−(π^2 /(18))(√3)
Φ=0logxx6+1dxchangementx6=tgiveΦ=160log(t16)1+tt161dt=1360t161logt1+tdtletf(a)=0ta11+tdtf(a)=0ta1logt1+tdtf(16)=36ΦΦ=136f(16)weknowf(a)=πsin(πa)f(a)=π2cos(πa)sin2(πa)f(16)=π2×32(12)2=4π2.32=2π23Φ=136(2π23)=π2183

Leave a Reply

Your email address will not be published. Required fields are marked *