calculate-0-logx-x-6-1-dx- Tinku Tara June 3, 2023 Integration 0 Comments FacebookTweetPin Question Number 143545 by mathmax by abdo last updated on 15/Jun/21 calculate∫0∞logxx6+1dx Answered by Pagnol last updated on 15/Jun/21 I=∫0∞logxx6+1dx,u=x6⇒x=u16⇒dx=16u−56du=136∫0∞u−56loguu+1duI(α)=∫0∞uαu+1du=β(α+1,−α)=Γ(α+1)Γ(−α)Γ(1)I′(α)=∫0∞uαlnuu+1du=−Γ(α+1)Γ′(−α)+Γ′(α+1)Γ(−α)I′(−56)=−Γ(16)Γ′(56)+Γ′(16)Γ(56)=Γ(16)Γ(56)[ψ(16)−ψ(56)]=πsin(π6)[−πcot(56π)]=2π(π3)=23π2I=136I′(−56)=318π2 Answered by mathmax by abdo last updated on 15/Jun/21 Φ=∫0∞logxx6+1dxchangementx6=tgiveΦ=16∫0∞log(t16)1+tt16−1dt=136∫0∞t16−1logt1+tdtletf(a)=∫0∞ta−11+tdt⇒f′(a)=∫0∞ta−1logt1+tdt⇒f′(16)=36Φ⇒Φ=136f′(16)weknowf(a)=πsin(πa)⇒f′(a)=−π2cos(πa)sin2(πa)⇒f′(16)=−π2×32(12)2=−4π2.32=−2π23⇒Φ=136(−2π23)=−π2183 Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: calculate-the-polar-integral-that-give-the-area-of-the-region-bunded-by-the-curves-r-2-r-4cos-and-r-cos-3-Next Next post: prove-that-lim-x-1-sin-cos-x-x-1-2-3-2- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.