Menu Close

calculate-0-pi-2-cos-2-x-cosx-sinx-dx-




Question Number 65691 by mathmax by abdo last updated on 02/Aug/19
calculate ∫_0 ^(π/2)   ((cos^2 x)/(cosx +sinx))dx
calculate0π2cos2xcosx+sinxdx
Commented by mathmax by abdo last updated on 02/Aug/19
tan((u/2))method   let I =∫_0 ^(π/2)   ((cos^2 x)/(cosx+sinx))dx ⇒I =∫_0 ^(π/2)   ((cosx)/(1+tanx))dx  changement tan((x/2))=t  give I =∫_0 ^1    (((1−t^2 )/(1+t^2 ))/(1+((2t)/(1−t^2 ))))((2dt)/(1+t^2 ))  =2 ∫_0 ^1  ((1−t^2 )/((1+t^2 )^2 )) ((1−t^2 )/(1−t^2 +2t))dt =2 ∫_0 ^1   (((1−t^2 )^2 )/((1+t^2 )(−t^2 +2t+1)))dt  =−2 ∫_0 ^1   (((1−t^2 )^2 )/((1+t^2 )(t^2 −2t−1)))dt let decompose   F(t) =((t^4 −2t^2  +1)/((t^2 +1)(t^2 −2t−1))) ⇒F(t) =((t^4 −2t^2  +1)/(t^4 −2t^3 −t^2 +t^2 −2t−1))  =((t^4 −2t^2  +1)/(t^4 −2t^3 −2t−1)) ⇒F(t)−1 =((t^4 −2t^2  +1−t^4 +2t^3 +2t+1)/(t^4 −2t^3 −2t −1))  =((2t^3 −2t^2  +2t+2)/((t^2 +1)(t^2 −2t−1))) =G(t)=((at+b)/(t^(2 ) +1)) +(c/(t−t_1 )) +(d/(t−t_2 ))  Δ^′ =1+1=2 ⇒t_1 =1+(√2)  and t_2 =1−(√2)  c=lim_(t→t_1 ) (t−t_1 )G(t) =((2t_1 ^3 −2t_1 ^2  +2t_1  +2)/((t_1 ^2  +1)(t_1 −t_2 )))   (t_1 −t_2 =2(√2))  d =lim_(t→t_2 ) (t−t_2 )G(t_2 ) =((2t_2 ^3 −2t_2 ^2  +2t_2  +2)/((t_2 ^2  +1)(t_2 −t_1 )))  lim_(t→+∞) tG(t) =2 =a +c +d ⇒a =2−c−d  G(0) =−2=b−(c/t_1 )−(d/t_2 ) ⇒b =(c/t_1 ) +(d/t_2 )−2  rest to simplify the  calculus ⇒∫ F(t)dt =t +∫ G(t)dt  =t  +cln∣t−t_1 ∣+d∣t−t_2 ∣+(a/2)ln(t^2  +1)+b arctant +λ  ....be continued....
tan(u2)methodletI=0π2cos2xcosx+sinxdxI=0π2cosx1+tanxdxchangementtan(x2)=tgiveI=011t21+t21+2t1t22dt1+t2=2011t2(1+t2)21t21t2+2tdt=201(1t2)2(1+t2)(t2+2t+1)dt=201(1t2)2(1+t2)(t22t1)dtletdecomposeF(t)=t42t2+1(t2+1)(t22t1)F(t)=t42t2+1t42t3t2+t22t1=t42t2+1t42t32t1F(t)1=t42t2+1t4+2t3+2t+1t42t32t1=2t32t2+2t+2(t2+1)(t22t1)=G(t)=at+bt2+1+ctt1+dtt2Δ=1+1=2t1=1+2andt2=12c=limtt1(tt1)G(t)=2t132t12+2t1+2(t12+1)(t1t2)(t1t2=22)d=limtt2(tt2)G(t2)=2t232t22+2t2+2(t22+1)(t2t1)limt+tG(t)=2=a+c+da=2cdG(0)=2=bct1dt2b=ct1+dt22resttosimplifythecalculusF(t)dt=t+G(t)dt=t+clntt1+dtt2+a2ln(t2+1)+barctant+λ.becontinued.
Answered by Tanmay chaudhury last updated on 02/Aug/19
I=∫_0 ^(π/2) ((cos^2 x)/(cosx+sinx))dx  I=∫_0 ^(π/2) ((cos^2 ((π/2)−x))/(cos((π/2)−x)+sin((π/2)−x)))dx  =∫_0 ^(π/2) ((sin^2 x)/(sinx+cosx))dx  2I=∫_0 ^(π/2) (dx/(sinx+cosx))  2I=∫_0 ^(π/2) (dx/( (√2) ((1/( (√2)))sinx+(1/( (√2)))cosx)))  I=(1/(2(√2)))∫_0 ^(π/2) (dx/(sin((π/4)+x)))  I=(1/(2(√2)))∫_0 ^(π/4) cosec((π/4)+x)dx  I=(1/(2(√2)))∣lntan((((π/4)+x)/2))∣_0 ^(π/4)   =(1/(2(√2)))[lntan((π/4))−lntan((π/8))]  =((−1)/(2(√2)))lntan((π/8))
I=0π2cos2xcosx+sinxdxI=0π2cos2(π2x)cos(π2x)+sin(π2x)dx=0π2sin2xsinx+cosxdx2I=0π2dxsinx+cosx2I=0π2dx2(12sinx+12cosx)I=1220π2dxsin(π4+x)I=1220π4cosec(π4+x)dxI=122lntan(π4+x2)0π4=122[lntan(π4)lntan(π8)]=122lntan(π8)
Commented by mathmax by abdo last updated on 02/Aug/19
thank you sir tanmay
thankyousirtanmay
Commented by Tanmay chaudhury last updated on 02/Aug/19
most eelcome sir...
mosteelcomesir
Commented by peter frank last updated on 02/Aug/19
thank you
thankyou