Question Number 66325 by mathmax by abdo last updated on 12/Aug/19
$${calculate}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \:{cos}^{\mathrm{4}} {x}\:{sin}^{\mathrm{2}} {x}\:{dx} \\ $$
Commented by Prithwish sen last updated on 13/Aug/19
$$\frac{\mathrm{1}}{\mathrm{8}}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \left(\mathrm{cos2x}+\mathrm{1}\right)\mathrm{sin}^{\mathrm{2}} \mathrm{2xdx}=\frac{\mathrm{1}}{\mathrm{8}}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \mathrm{cos2xsin}^{\mathrm{2}} \mathrm{2xdx}+\frac{\mathrm{1}}{\mathrm{16}}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \left(\mathrm{1}−\mathrm{cos4x}\right)\mathrm{dx} \\ $$$$=\left[\frac{\mathrm{sin}^{\mathrm{3}} \mathrm{2x}}{\mathrm{48}}\:+\frac{\mathrm{x}}{\mathrm{16}}\:−\frac{\mathrm{sin4x}}{\mathrm{64}}\right]_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} =\:\frac{\mathrm{1}}{\mathrm{48}}\:+\:\frac{\pi}{\mathrm{64}\:}\:\:\mathrm{please}\:\mathrm{check}. \\ $$
Commented by mathmax by abdo last updated on 13/Aug/19
$${let}\:{I}\:=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \:{cos}^{\mathrm{4}} {x}\:{sin}^{\mathrm{2}} {x}\:\Rightarrow{I}\:=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \left(\frac{\mathrm{1}+{cos}\left(\mathrm{2}{x}\right)}{\mathrm{2}}\right)^{\mathrm{2}} \left(\frac{\mathrm{1}−{cos}\left(\mathrm{2}{x}\right)}{\mathrm{2}}\right){dx} \\ $$$$=\frac{\mathrm{1}}{\mathrm{8}}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \left(\mathrm{1}+\mathrm{2}{cos}\left(\mathrm{2}{x}\right)+\frac{\mathrm{1}+{cos}\left(\mathrm{4}{x}\right)}{\mathrm{2}}\right)\left(\mathrm{1}−{cos}\left(\mathrm{2}{x}\right){dx}\right. \\ $$$$=\frac{\mathrm{1}}{\mathrm{16}}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \left(\mathrm{2}+\mathrm{4}{cos}\left(\mathrm{2}{x}\right)+\mathrm{1}+{cos}\left(\mathrm{4}{x}\right)\right)\left(\mathrm{1}−{cos}\left(\mathrm{2}{x}\right)\right){dx} \\ $$$$=\frac{\mathrm{1}}{\mathrm{16}}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \left(\mathrm{3}\:+\mathrm{4}{cos}\left(\mathrm{2}{x}\right)+{cos}\left(\mathrm{4}{x}\right)\right)\left(\mathrm{1}−{cos}\left(\mathrm{2}{x}\right)\right){dx} \\ $$$$\mathrm{16}\:{I}\:=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \left(\mathrm{3}+\mathrm{4}{cos}\left(\mathrm{2}{x}\right)+{cos}\left(\mathrm{4}{x}\right)−\mathrm{3}{cos}\left(\mathrm{2}{x}\right)−\mathrm{4}{cos}^{\mathrm{2}} \left(\mathrm{2}{x}\right)−{cos}\left(\mathrm{2}{x}\right){cos}\left(\mathrm{4}{x}\right)\right){dx} \\ $$$$=\frac{\mathrm{3}\pi}{\mathrm{4}}\:+\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \:{cos}\left(\mathrm{2}{x}\right){dx}\:+\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \:{cos}\left(\mathrm{4}{x}\right){dx}−\mathrm{4}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \:\frac{\mathrm{1}+{cos}\left(\mathrm{4}{x}\right)}{\mathrm{2}}{dx} \\ $$$$−\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \:{cos}\left(\mathrm{2}{x}\right){cos}\left(\mathrm{4}{x}\right){dx} \\ $$$$=\frac{\mathrm{3}\pi}{\mathrm{4}}\:+\frac{\mathrm{1}}{\mathrm{2}}\left[{sin}\left(\mathrm{2}{x}\right)\right]_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \:+\frac{\mathrm{1}}{\mathrm{4}}\left[{sin}\left(\mathrm{4}{x}\right)\right]_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \:−\frac{\pi}{\mathrm{2}}\:−\frac{\mathrm{1}}{\mathrm{2}}\left[{sin}\left(\mathrm{4}{x}\right)\right]_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \\ $$$$=\frac{\mathrm{3}\pi}{\mathrm{4}}+\frac{\mathrm{1}}{\mathrm{2}}−\frac{\pi}{\mathrm{2}}\:=\frac{\pi}{\mathrm{4}}\:+\frac{\mathrm{1}}{\mathrm{2}} \\ $$
Commented by mathmax by abdo last updated on 13/Aug/19
$${error}\:{at}\:{final}\:{line}\: \\ $$$$\mathrm{16}\:{I}\:=\frac{\mathrm{3}\pi}{\mathrm{4}}\:+\frac{\mathrm{1}}{\mathrm{2}}−\frac{\pi}{\mathrm{2}}\:−\frac{\mathrm{1}}{\mathrm{2}}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \:\left({cos}\left(\mathrm{6}{x}\right)+{cos}\left(\mathrm{2}{x}\right)\right){dx} \\ $$$${but}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \:{cos}\left(\mathrm{6}{x}\right){dx}\:+\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \:{cos}\left(\mathrm{2}{x}\right){dx}\:=\frac{\mathrm{1}}{\mathrm{6}}\left[{sin}\left(\mathrm{6}{x}\right)\right]_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \:+\frac{\mathrm{1}}{\mathrm{2}}\left[{sin}\left(\mathrm{2}{x}\right)\right]_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \\ $$$$=\frac{\mathrm{1}}{\mathrm{6}}{sin}\left(\frac{\mathrm{3}\pi}{\mathrm{2}}\right)+\frac{\mathrm{1}}{\mathrm{2}}\:=\frac{\mathrm{1}}{\mathrm{2}}−\frac{\mathrm{1}}{\mathrm{6}}\:\Rightarrow \\ $$$$\mathrm{16}\:{I}\:=\frac{\pi}{\mathrm{4}}\:+\frac{\mathrm{1}}{\mathrm{2}}−\frac{\mathrm{1}}{\mathrm{4}}\:+\frac{\mathrm{1}}{\mathrm{12}}\:=\frac{\pi}{\mathrm{4}}\:+\frac{\mathrm{1}}{\mathrm{4}}+\frac{\mathrm{1}}{\mathrm{12}}\:=\frac{\pi}{\mathrm{4}}\:+\frac{\mathrm{1}}{\mathrm{3}}\:\Rightarrow \\ $$$${I}\:=\frac{\pi}{\mathrm{64}}\:+\frac{\mathrm{1}}{\mathrm{48}}\:. \\ $$