Menu Close

calculate-0-pi-4-cos-4-x-sin-2-x-dx-




Question Number 66325 by mathmax by abdo last updated on 12/Aug/19
calculate ∫_0 ^(π/4)  cos^4 x sin^2 x dx
calculate0π4cos4xsin2xdx
Commented by Prithwish sen last updated on 13/Aug/19
(1/8)∫_0 ^(π/4) (cos2x+1)sin^2 2xdx=(1/8)∫_0 ^(π/4) cos2xsin^2 2xdx+(1/(16))∫_0 ^(π/4) (1−cos4x)dx  =[((sin^3 2x)/(48)) +(x/(16)) −((sin4x)/(64))]_0 ^(π/4) = (1/(48)) + (π/(64 ))  please check.
180π4(cos2x+1)sin22xdx=180π4cos2xsin22xdx+1160π4(1cos4x)dx=[sin32x48+x16sin4x64]0π4=148+π64pleasecheck.
Commented by mathmax by abdo last updated on 13/Aug/19
let I =∫_0 ^(π/4)  cos^4 x sin^2 x ⇒I =∫_0 ^(π/4) (((1+cos(2x))/2))^2 (((1−cos(2x))/2))dx  =(1/8) ∫_0 ^(π/4) (1+2cos(2x)+((1+cos(4x))/2))(1−cos(2x)dx  =(1/(16)) ∫_0 ^(π/4) (2+4cos(2x)+1+cos(4x))(1−cos(2x))dx  =(1/(16)) ∫_0 ^(π/4) (3 +4cos(2x)+cos(4x))(1−cos(2x))dx  16 I =∫_0 ^(π/4) (3+4cos(2x)+cos(4x)−3cos(2x)−4cos^2 (2x)−cos(2x)cos(4x))dx  =((3π)/4) + ∫_0 ^(π/4)  cos(2x)dx +∫_0 ^(π/4)  cos(4x)dx−4 ∫_0 ^(π/4)  ((1+cos(4x))/2)dx  −∫_0 ^(π/4)  cos(2x)cos(4x)dx  =((3π)/4) +(1/2)[sin(2x)]_0 ^(π/4)  +(1/4)[sin(4x)]_0 ^(π/4)  −(π/2) −(1/2)[sin(4x)]_0 ^(π/4)   =((3π)/4)+(1/2)−(π/2) =(π/4) +(1/2)
letI=0π4cos4xsin2xI=0π4(1+cos(2x)2)2(1cos(2x)2)dx=180π4(1+2cos(2x)+1+cos(4x)2)(1cos(2x)dx=1160π4(2+4cos(2x)+1+cos(4x))(1cos(2x))dx=1160π4(3+4cos(2x)+cos(4x))(1cos(2x))dx16I=0π4(3+4cos(2x)+cos(4x)3cos(2x)4cos2(2x)cos(2x)cos(4x))dx=3π4+0π4cos(2x)dx+0π4cos(4x)dx40π41+cos(4x)2dx0π4cos(2x)cos(4x)dx=3π4+12[sin(2x)]0π4+14[sin(4x)]0π4π212[sin(4x)]0π4=3π4+12π2=π4+12
Commented by mathmax by abdo last updated on 13/Aug/19
error at final line   16 I =((3π)/4) +(1/2)−(π/2) −(1/2) ∫_0 ^(π/4)  (cos(6x)+cos(2x))dx  but ∫_0 ^(π/4)  cos(6x)dx +∫_0 ^(π/4)  cos(2x)dx =(1/6)[sin(6x)]_0 ^(π/4)  +(1/2)[sin(2x)]_0 ^(π/4)   =(1/6)sin(((3π)/2))+(1/2) =(1/2)−(1/6) ⇒  16 I =(π/4) +(1/2)−(1/4) +(1/(12)) =(π/4) +(1/4)+(1/(12)) =(π/4) +(1/3) ⇒  I =(π/(64)) +(1/(48)) .
erroratfinalline16I=3π4+12π2120π4(cos(6x)+cos(2x))dxbut0π4cos(6x)dx+0π4cos(2x)dx=16[sin(6x)]0π4+12[sin(2x)]0π4=16sin(3π2)+12=121616I=π4+1214+112=π4+14+112=π4+13I=π64+148.

Leave a Reply

Your email address will not be published. Required fields are marked *