calculate-0-pi-4-cos-4-x-sin-2-x-dx- Tinku Tara June 3, 2023 Integration 0 Comments FacebookTweetPin Question Number 66325 by mathmax by abdo last updated on 12/Aug/19 calculate∫0π4cos4xsin2xdx Commented by Prithwish sen last updated on 13/Aug/19 18∫0π4(cos2x+1)sin22xdx=18∫0π4cos2xsin22xdx+116∫0π4(1−cos4x)dx=[sin32x48+x16−sin4x64]0π4=148+π64pleasecheck. Commented by mathmax by abdo last updated on 13/Aug/19 letI=∫0π4cos4xsin2x⇒I=∫0π4(1+cos(2x)2)2(1−cos(2x)2)dx=18∫0π4(1+2cos(2x)+1+cos(4x)2)(1−cos(2x)dx=116∫0π4(2+4cos(2x)+1+cos(4x))(1−cos(2x))dx=116∫0π4(3+4cos(2x)+cos(4x))(1−cos(2x))dx16I=∫0π4(3+4cos(2x)+cos(4x)−3cos(2x)−4cos2(2x)−cos(2x)cos(4x))dx=3π4+∫0π4cos(2x)dx+∫0π4cos(4x)dx−4∫0π41+cos(4x)2dx−∫0π4cos(2x)cos(4x)dx=3π4+12[sin(2x)]0π4+14[sin(4x)]0π4−π2−12[sin(4x)]0π4=3π4+12−π2=π4+12 Commented by mathmax by abdo last updated on 13/Aug/19 erroratfinalline16I=3π4+12−π2−12∫0π4(cos(6x)+cos(2x))dxbut∫0π4cos(6x)dx+∫0π4cos(2x)dx=16[sin(6x)]0π4+12[sin(2x)]0π4=16sin(3π2)+12=12−16⇒16I=π4+12−14+112=π4+14+112=π4+13⇒I=π64+148. Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: r-1-0-pi-2-5-2-2-x-2r-dx-Next Next post: find-nature-of-the-serie-n-1-1-n-1-2-n-ln-n- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.