calculate-0-pi-4-ln-cosx-dx-and-0-pi-4-ln-sinx-dx- Tinku Tara June 3, 2023 Integration 0 Comments FacebookTweetPin Question Number 70262 by mathmax by abdo last updated on 02/Oct/19 calculate∫0π4ln(cosx)dxand∫0π4ln(sinx)dx Commented by mathmax by abdo last updated on 06/Oct/19 letI=∫0π4ln(cosx)dxandJ=∫0π4ln(sinx)dxI+J=∫0π4ln(cosx+sinx)dx=∫0π4ln(2cos(x−π4))dx=π8ln(2)+∫0π4ln(cos(π4−x))dxbut∫0π4ln(cos(π4−x))dx=π4−x=t∫0π4ln(cost)dt=I⇒I+J=π8ln(2)+I⇒J=π8ln(2)I=∫0π4ln(cosx)dx=x=t212∫0π2ln(cos(t2))dt⇒2I=∫0π2ln(sin(π2−t2))dt=π−t2=u∫π2π4ln(sinu)(−2)du=2∫π4π2ln(sinu)du=2{∫π40ln(sinu)du+∫0π2ln(sinu)du}=2{−J−π2ln(2)}=−2J−πln(2)=−π4ln(2)−πln(2)=−5π4ln(2)⇒I=−5π8ln(2) Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Does-time-exist-Next Next post: How-do-you-solve-f-3-when-f-1-1-and-f-0-1-and-f-x-f-x-1-2f-x-2- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.