Menu Close

calculate-0-pi-4-ln-cosx-dx-and-0-pi-4-ln-sinx-dx-




Question Number 70262 by mathmax by abdo last updated on 02/Oct/19
calculate  ∫_0 ^(π/4) ln(cosx)dx  and ∫_0 ^(π/4) ln(sinx)dx
calculate0π4ln(cosx)dxand0π4ln(sinx)dx
Commented by mathmax by abdo last updated on 06/Oct/19
let I =∫_0 ^(π/4) ln(cosx)dx and J=∫_0 ^(π/4) ln(sinx)dx  I+J =∫_0 ^(π/4) ln(cosx +sinx)dx =∫_0 ^(π/4) ln((√2)cos(x−(π/4)))dx  =(π/8)ln(2) +∫_0 ^(π/4)  ln(cos((π/4)−x))dx  but  ∫_0 ^(π/4) ln(cos((π/4)−x))dx =_((π/4)−x=t)     ∫_0 ^(π/4) ln(cost)dt =I ⇒  I +J =(π/8)ln(2) +I ⇒J=(π/8)ln(2)  I =∫_0 ^(π/4) ln(cosx)dx =_(x=(t/2))    (1/2)∫_0 ^(π/2) ln(cos((t/2)))dt ⇒  2I= ∫_0 ^(π/2) ln(sin((π/2)−(t/2)))dt =_(((π−t)/2)=u)    ∫_(π/2) ^(π/4) ln(sinu)(−2)du  =2 ∫_(π/4) ^(π/2)  ln(sinu)du =2{ ∫_(π/4) ^0 ln(sinu)du +∫_0 ^(π/2) ln(sinu)du}  =2{−J −(π/2)ln(2)} =−2J −πln(2)=−(π/4)ln(2)−πln(2)  =−((5π)/4)ln(2) ⇒I =−((5π)/8)ln(2)
letI=0π4ln(cosx)dxandJ=0π4ln(sinx)dxI+J=0π4ln(cosx+sinx)dx=0π4ln(2cos(xπ4))dx=π8ln(2)+0π4ln(cos(π4x))dxbut0π4ln(cos(π4x))dx=π4x=t0π4ln(cost)dt=II+J=π8ln(2)+IJ=π8ln(2)I=0π4ln(cosx)dx=x=t2120π2ln(cos(t2))dt2I=0π2ln(sin(π2t2))dt=πt2=uπ2π4ln(sinu)(2)du=2π4π2ln(sinu)du=2{π40ln(sinu)du+0π2ln(sinu)du}=2{Jπ2ln(2)}=2Jπln(2)=π4ln(2)πln(2)=5π4ln(2)I=5π8ln(2)

Leave a Reply

Your email address will not be published. Required fields are marked *