Menu Close

calculate-0-sin-3x-2-x-2-dx-




Question Number 65922 by mathmax by abdo last updated on 05/Aug/19
calculate ∫_0 ^∞   ((sin(3x^2 ))/x^2 )dx
calculate0sin(3x2)x2dx
Commented by mathmax by abdo last updated on 08/Aug/19
let A =∫_0 ^∞   ((sin(3x^2 ))/x^2 )dx ⇒A =_((√3)x =t)    3∫_0 ^∞  ((sin(t^2 ))/t^2 )(dt/( (√3)))  =(1/( (√3)))∫_0 ^∞   ((sin(t^2 ))/t^2 )dt  let ϕ(x) =∫_0 ^∞   ((sin(t^2 )e^(−xt^2 ) )/t^2 )dt  with x≥0  ϕ^′ (x) =−∫_0 ^∞   e^(−xt^2 ) sin(t^2 )dt =−Im(∫_0 ^∞  e^(−xt^2 +it^2 ) dt) and  ∫_0 ^∞  e^((−x+i)t^2 ) dt =_((√(−x+i))t =u)    ∫_0 ^∞  e^(−u^2 ) (du/( (√(−x+i))))  =((√π)/(2(√(−x+i)))) ⇒ϕ(x) =((√π)/2)∫ (dx/( (√(−x+i)))) +c  −x+i =(√(1+x^2 )) e^(iarctan(−(1/x)))  =(√(1+x^2 ))e^(−i arctan((1/x)))   =(√(1+x^2 )) e^(−i((π/2)−arctanx))  =−i(√(1+x^2 ))e^(iatctanx)  ⇒  (√(−x+i)) =(√(−i))(1+x^2 )^(1/4)  e^((i/2)arctan(x))  =e^(−((iπ)/4))  (1+x^2 )^(1/4)  e^((i/2)arctanx)  ⇒  ϕ(x) =((√π)/2) e^((iπ)/4)   ∫   (1+x^2 )^(−(1/4)) e^(−(i/2)arctanx) dx +c  ....be continued....
letA=0sin(3x2)x2dxA=3x=t30sin(t2)t2dt3=130sin(t2)t2dtletφ(x)=0sin(t2)ext2t2dtwithx0φ(x)=0ext2sin(t2)dt=Im(0ext2+it2dt)and0e(x+i)t2dt=x+it=u0eu2dux+i=π2x+iφ(x)=π2dxx+i+cx+i=1+x2eiarctan(1x)=1+x2eiarctan(1x)=1+x2ei(π2arctanx)=i1+x2eiatctanxx+i=i(1+x2)14ei2arctan(x)=eiπ4(1+x2)14ei2arctanxφ(x)=π2eiπ4(1+x2)14ei2arctanxdx+c.becontinued.